ANALIZADOR DE PARÁMETROS DE RED **TIPO ND40 MANUAL DE USUARIO – QUICK START** Name Sign Date Name Designed K. Raczyński QS-ND40_ES_20181130 D. Swałdek Checked Approved D. Tront Number Sheet Revision 30722007E 1 of 1 Size No of Change Card Rev Q-ty Α4

CONTENIDO

1. Especificaciones generales	
1.1. Características del dispositivo	
1.1.1. Seguridad de func ⁱ onamiento	4
1.2.1. Diagramas de conexionado	
1.2.1.1. Medida de señales	
1.2.1.2. Interfaces de comunicación	
1.2.1.3. Entradas digitales	
1.2.1.4. Salidas relé	
1.2.1.5. Salidas analógicas	
1.2.2. Instalación	
2. Funcionamiento	
2.1. Descripción de funciones del panel de control	
2.2. Web server	
2.3. Tarjeta de memoria SD	
2.4. Actualización	
3. Datos técnicos	
3.1. Medidas	17
3.2. Opciones de expansión	
3.2.1 Salidas analógicas	
3.2.2 Entradas digitales	
3.2.3. Salidas de alarma	
3.3. Condiciones de referencia y condiciones nominales de trabajo	21
3.4. Seguridad eléctrica según PN-EN 61010-1, aislamiento básico	22
3.5. Compatibilidad electromagnética	
3.6. Montaje	
3.7. Conformidad con las normas	22
4. Mapa de registros	23
4.1. Información y and registros de estado	23
4.1.1 Registros de estados	23
4.3. Parámetros promediados en tiempo (Ordenado)	25
4.4. Frecuencia, temperatura / resistencia	25
4.5. Estados de las entradas digitales	25
4.6. Medidores de energía	
4.7. Registros THD, THDS, THDG y PWHD	27
4.8. Registros de armónicos	27
4.9. Registros de tensión de semi-onda	28
5 Codificación	29

1. Especificaciones generales

El medidor ND40 está diseñado para la medición y análisis de parámetros de red de alimentación trifásica, de 3 o 4 hilos en sistemas balanceados o no balanceados.

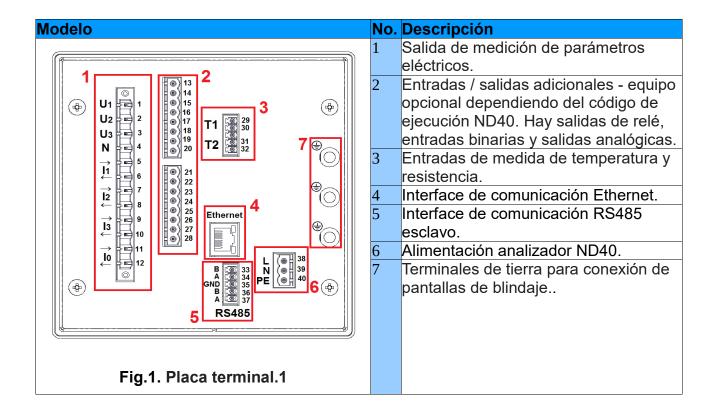
El conjunto completo del analizador incluye:

Medidor ND40	1 pieza
 Manual abreviado del usuario 	1 pieza
 soportes de montaje para fijar el dispositivo en el panel 	4 piezas
– Ilave	1 pieza
– tarjeta de garantía	1 pieza
 filtro de ferrita STAR-TEC 74271132 	1 pieza
– Tarjeta SD	1 pieza

¡Precaución! En la tarjeta SD se encuentra el software de configuración ND40 y el manual del usuario.

1.1. Características del dispositivo

- medición y cálculo de los parámetros de calidad energética de acuerdo con la norma PN EN 50160.
- funcionamiento intuitivo del dispositivo mediante la pantalla táctil y la interface gráfica de usuario basada en Linux.
- pantalla táctil en color LCD TFT 5,6 ", 640x480 píxeles
- interfaces de comunicación: Ethernet 10/100 Base-T, Modbus TCP / IP esclavo, RS-485 Modbus esclavo
- todas las fases están separadas
- protección frontal IP65 de la caja
- selección de la zona horaria, ajuste automático para el horario de verano, sincronización con el servicio de tiempo
- archivado de datos en una tarjeta SD
- servidor WWW, servidor FTP
- registros de interrupciones, crestas, valles, alarmas y auditorías
- actualización de firmware
- visualización dedicada en forma de, entre otros: displays digitales, analógicos, armónicos, diagramas vectoriales, tendencias, registros de formas de onda


1.1.1. Seguridad de funcionamiento

¡Precaución! Quitar la carcasa del medidor durante el período de garantía anula la garantía.

- El montaje y la instalación de las conexiones eléctricas sólo podrán ser realizados por un electricista debidamente cualificado.
- Compruebe siempre las conexiones antes de conectar el medidor
- .- Antes de quitar la caja del analizador, apague siempre la alimentación y desconecte los circuitos de medición
- . El dispositivo está destinado a ser instalado y utilizado en entornos electromagnéticos industriales.
- Debe instalarse un interruptor o un disyuntor en el edificio o instalación. Debe estar ubicado cerca del dispositivo, fácilmente accesible para el operador y debidamente marcado.

1.2.1. Esquemas de conexionado

¡Precaución! El conductor PE (tierra) debe estar conectado.

1.2.1.1. Señales de medición

Circuito a 3 hilos. Medida directa.

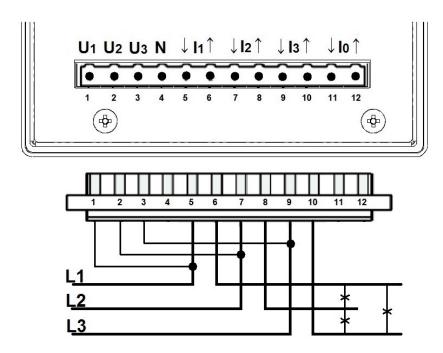


Fig.2 Esquema - Circuito a 3 hilos.

Circuito a 3 hilos. Medida semi-indirecta.

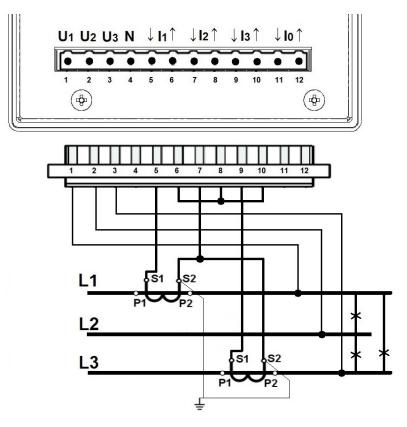


Fig.3. Esquema – Circuito a 3 hilos.

Circuito a 3 hilos. Medida indirecta mediante dos transformadores de corriente y dos o tres transformadores de tensión.

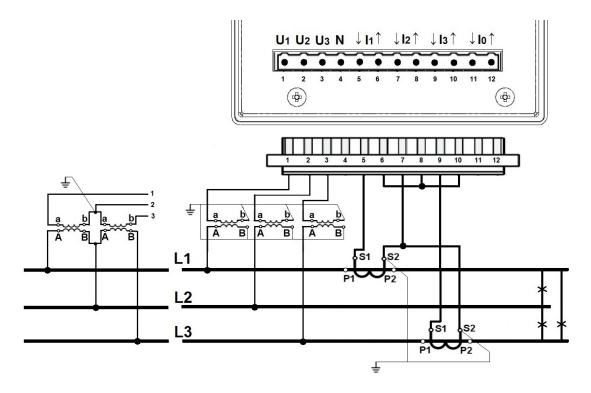


Fig.4. Esquema - Circuito a 3 hilos.

Circuito a 4 hilos. Medida directa.

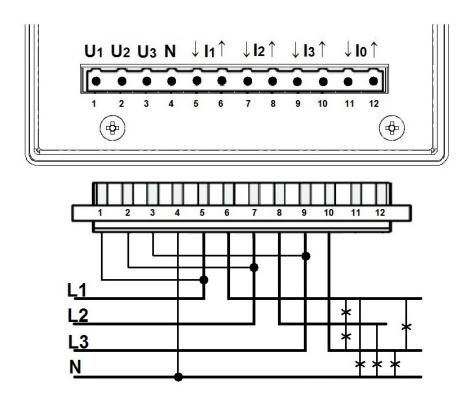


Fig.5. Esquema – circuito a 4 hilos.

Circuito a 4 hilos. Medida semi-indirecta.

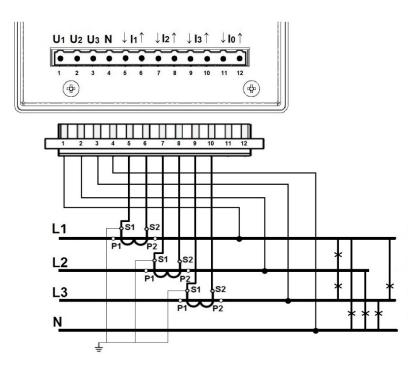


Fig.6. Esquema – circuito a 4 hilos.

Circuito a 4 hilos. Medida semi-indirecta con cuatro transformadores de corriente.

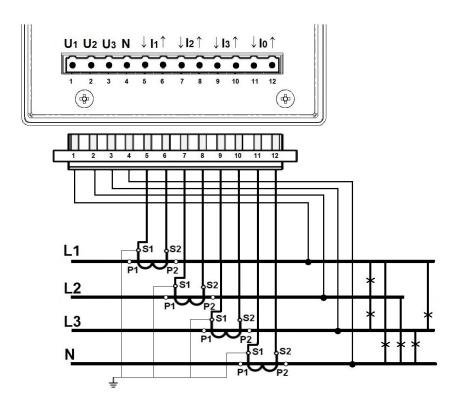


Fig.7. Esquema – circuito a 4 hilos.

Circuito a 4 hilos. Medida indirecta con tres transformadores de corriente y dos o tres transformadores de tensión.

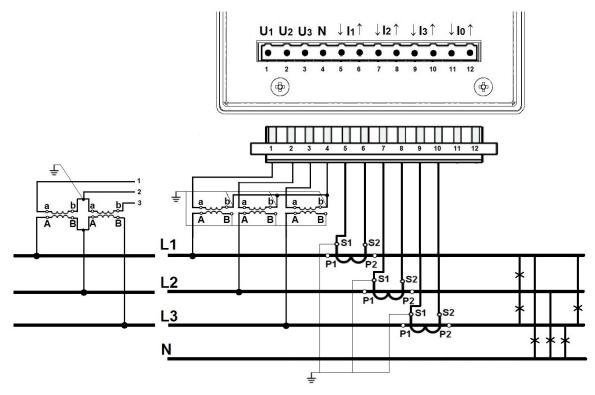


Fig.8. Esquema - circuito a 4 hilos

4-wire network. Medida indirecta con cuatro transformadores de corriente y dos o tres transformadores de tensión.

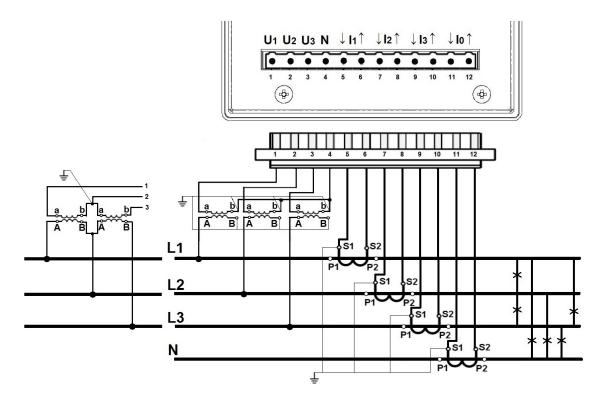
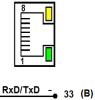
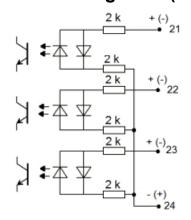



Fig.9. Esquema – circuito a 4 hilos.

1.2.1.2. Interfaces de comunicación

Conector Ethernet (RJ45).

Para conectar el medidor al hub (concentrador) o al switch, es necesario utilizar un cable con hilos 1: 1.



RxD/TxD + 34 (A)

El interface RS485 (Esclavo) está asignado a los pares de terminales 33-34 and 36-37.

Fig.10. Interfaces comunicación.

1.2.1.3. Entradas digitales (binarias)

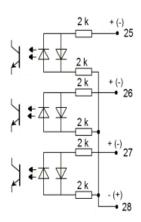


Fig.11. Entradas digitales.

Las entradas digitales BI 1...BI 6 son controladas por las señales::

0 V dc — entrada digital inactiva +5...24 V dc — entrada digital activa

Dónde:

terminal 21 : entrada digital BI 1, terminal 22 : entrada digital BI 2, terminal 23 : entrada digital BI 3, terminal 27 : entrada digital BI 6.

1.2.1.4. Salidas relé

Salidas de relé configuradas como normalmente abiertas (NO). Dependiendo del código de pedido, el medidor puede tener 4 ó 8 salidas de relé.

Dónde:

Terminales 13-14: salida 1, terminales 21-22: salida 5, Terminales 15-16: salida 2, terminales 23-24: salida 6, Terminales 17-18: salida 3, terminales 25-26: salida 7, Terminales 19-20: salida 4, terminales 27-28: salida 8.

La versión con 4 relés utiliza la parte superior del conector de la tarjeta de expansión, terminales de 13 a 20.

La versión con 8 relés utiliza la parte superior e inferior del conector de la tarjeta de expansión, terminales de 13 a 28.

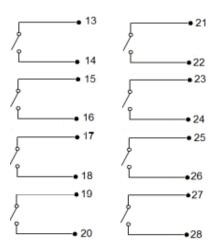


Fig.12. Salidas relé.

1.2.1.5. Salidas analógicas

La versión con salidas analógicas utiliza la parte superior del conector de la tarjeta de expansión e incluye 3 pares de terminales ::

- 13 14 salida analógica 1 (AO1)
- 16 17 salida analógica 2 (AO2)
- 19 20 salida analógica 3 (AO3)

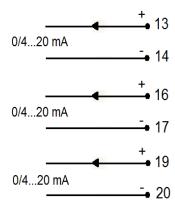
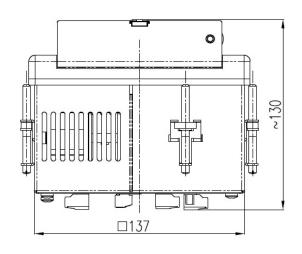



Fig.13. Salidas analógicas.

1.2.2. Instalación

ND40 está adaptado para fijarse al panel mediante soportes de montaje. Dimensiones de la caja 144 x 144 x 104 mm, dimensiones del orificio de montaje 138 x 138 mm.

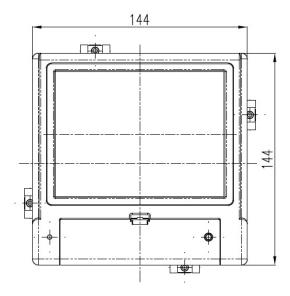


Fig.14. Dimensiones - inferior.

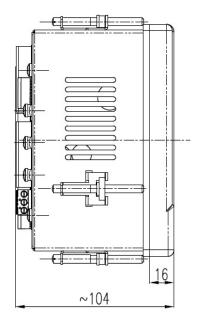


Fig.16. Dimensiones - lateral.

Fig.15. Dimensiones - frontal.

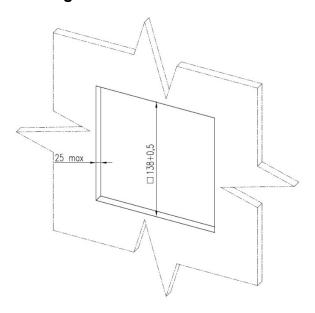
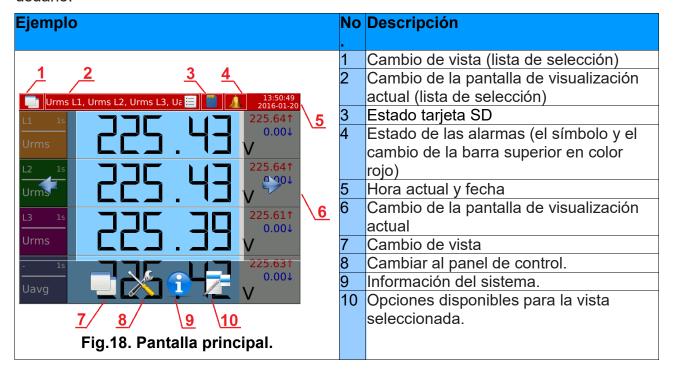
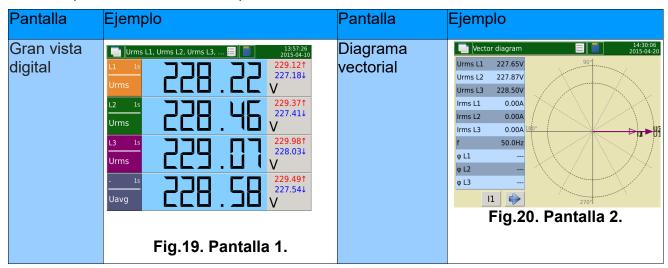
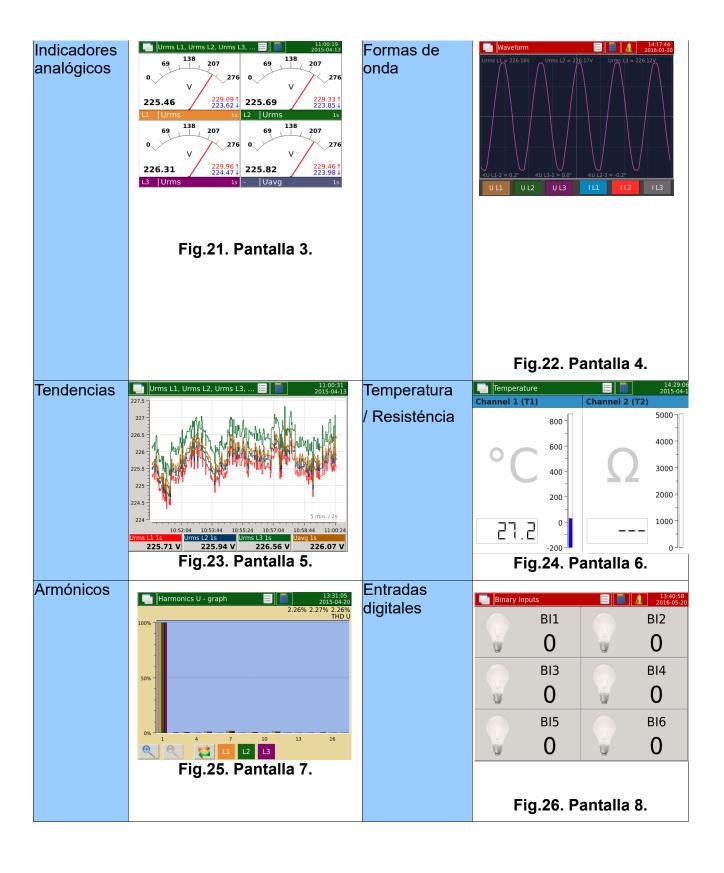



Fig.17. Dimensiones – agujero en panel.


2. Funcionamiento


Después de tocar cualquier área de la pantalla, se muestra el conjunto de herramientas de administración y navegación del analizador.

Descripción de elementos individuales para operar el analizador disponible para el usuario.

Lista de pantalla de muestra disponible en ND40.

2.1. Descripción de funciones del Panel de Control

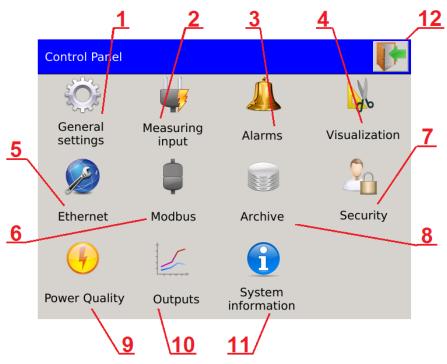


Fig.29. Panel de control – pantalla principal.

No.	Descripción						
1	Ajustes generales del analizador, p.e.: Fecha, hora, configuración de la pantalla.						
2	Configuración de las entradas de medición, p.e.: Transformadores, rangos, frecuencias,						
	sensores de temperatura / resistencia.						
3	Ajustes de alarmas, p.e.: Establecer la fuente, activar / desactivar condiciones, relés,						
	manejar e-mails informando sobre eventos.						
4	Configuración de pantallas y vistas. Gestión de conjuntos de datos definidos y creación						
	de conjuntos de datos del usuario.						
5	Configuración de la identificación del analizador en red Ethernet, configuración de FTP,						
	WWW, servidores SMTP y correo electrónico.						
6	Configuración de Modbus RTU y transmisión TCP / IP.						
7	Configuración de parámetros y condiciones de archivo.						
8	Gestión de derechos de usuarios, configuración de contraseñas y derechos de acceso.						
9	Establecimiento de parámetros para valles, interrupciones y crestas.						
10	Configuración de parámetros para salidas analógicas y relés (según la versión)						
11	Información sobre el analizador, módulo de actualización)						
12	Finalización del trabajo en el Panel de Control, guardar los cambios de configuración y						
	exportar los ajustes a un archivo.						

2.2. Servidor Web

Dependiendo de la configuración, el acceso al servidor Web puede estar precedido por la verificación de usuarios, disponible de forma anónima (sin la ventana de inicio de sesión) o desactivada.

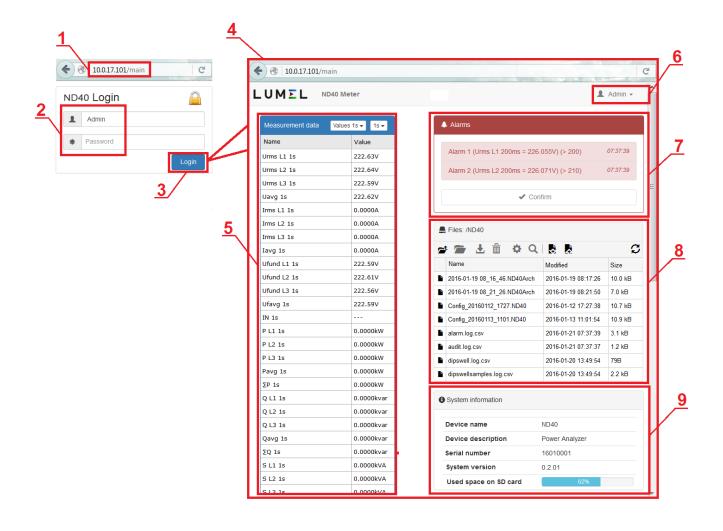


Fig.30. Servidor web - vista general.

No.	Descripción
1	Dirección IP asignada al dispositivo. Comprobación de dirección o cambio en la
	pestaña Ethernet en el Panel de control.
2	Contraseña y acceso. Acceso estándar: Admin, sin contraseña. Posible edición de la
	pestaña Acceso en Ethernet (usuarios y derechos) en el Panel de control.
3	El cambio a la página principal está precedido por la verificación del usuario.
4	Ventana de la página principal del servidor Web.
5	Módulo de presentación de datos con tiempo de actualización seleccionable y
	conjuntos de presentación de datos predeterminados o generados por el usuario.
6	Opciones adicionales, dependiendo de los derechos de usuario.
7	Módulo de alarma con posibilidad de previsualizar y confirmar eventos.
8	Gestión de archivos en la tarjeta SD
9	Módulo de información.

2.3. Tarjeta de memoria SD

Los archivos de muestra se almacenan en la tarjeta SD.

Función	Archivo de muestra	Descripción
Archivo	2016-01-19	Archivo con la opción de previsualización
	08_16_46.ND40Arch	y exportación a csv. Formato compatible con SQLite.
Configuración	Config_20160112_1727.ND40	El archivo de configuración permite al
		usuario la configuración desde el archivo
		al dispositivo.
	alarm.log.csv	Información sobre la aparición de alarmas.
alarma		
Registros de	audit.log.csv	Información sobre eventos del sistema.
sistema		
Valles y	dipswell.log.csv	Información sobre la ocurrencia del
crestas		evento.
Medida de	dipswellsamples.log.csv	Información con medidas adicionales que
valles y		preceden y ocurren inmediatamente
crestas		después del evento.
Actualización	ND40_firmware_0.2.5.img	Archivo de actualización

2.4. Actualización

Para actualizar el software del analizador ND40, el archivo de actualización se debe descargar desde el sitio web del fabricante. El archivo descargado se debe copiar en la tarjeta SD del analizador.

En el panel de control, en la pestaña de información del sistema, seleccione el grupo Actualizar y, a continuación, seleccione el archivo de actualización.

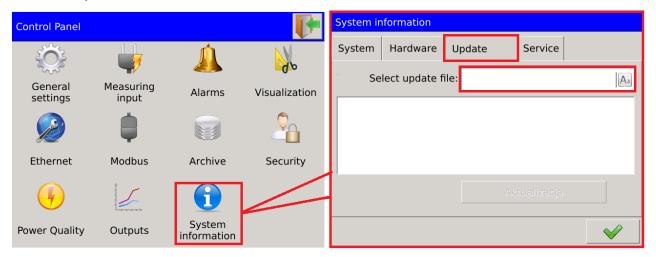


Fig.31. Selección del archivo de actualización ...

El usuario confirma la selección de la lista de archivos detectados. La información sobre el archivo de actualización se mostrará en la siguiente ventana. El proceso de actualización de la versión seleccionada se completará después de seleccionar Actualizar.

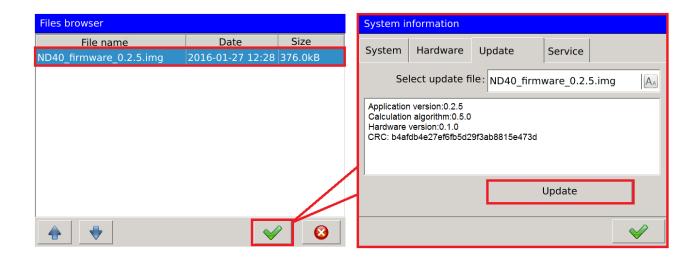


Fig.32. Actualización.

3. Datos técnicos

3.1. Medidas

Error básico con respecto al valor nominal.

V	alor medido		Rango de medida	Error	básico	Observa	aciones
	Símbolo	Acum.		Clase A/S	S Clase S	Clase A/S	Clase S
			Tensión				
RMS	Urms L1,	200 ms		±0,	2%	Clas	se B
	Urms L2,	1 s	Un = 230 V :	±0,	2%	Clas	se B
	Urms L3,	3 s	23,0345,0 V (Ku = 1)	±0,1%	±0,2%	Clase A	Clase S
	Uavg L123.	10 min	1,38 MV (Ku ≠ 1)	±0,1%	±0,2%	Clase A ¹⁾	Clase S
		2 horas		±0,1%	±0,2%	Clase A ¹⁾	Clase S
RMS básico	Ufund L1,	200 ms					
	Ufund L2,	1 s	Un = 230 V :				
	Ufund L3,	3 s	23,0345,0 V (Ku = 1)				
	Ufavg L123.	10 min	1,38 MV (Ku ≠ 1)	±0,	2%		
		2 horas					
Fase-fase	Umf L1-2,	200 ms					
	Umf L2-3,	1 s	Un = 400 V :				
	Umf L3-1,	3 s	40,0600,0 V (Ku = 1)				
	Umf avg L123.	10 min	2,4 MV (Ku ≠ 1)	±0,	5%		
		2 horas					
Asimetría	Vunb.	200 ms					
		1 s					
		3 s	0,00100,00%				
		10 min		±0,	3%		
		2 horas					
Semi-onda	Uhalf1 L1		Un = 230 V :				
	Uhalf24 L1,	200 ms	23,0345,0 V (Ku = 1)				
	Uhalf1 L2	200 1113	1,38 MV (Ku ≠ 1)	±0,2%	±1%	Clase A	Clase S
	Uhalf24 L2,		1,30 WW (Ku + 1)				

	Uhalf1 L3 Uhalf24 L3.				
Armónicos	Har1 UL1 Har51 UL1, Har1 UL2 Har51 UL2, Har51 UL3 Har51 UL3.	1 s	0.00100.00%	U _m ≥ 1% U _{nom} ±5% U _m U _m < 1% U _{nom} ±0.05% U _{nom}	Clase I
Factor de distorsión	THD U L1, THD U L2, THD U L3, THD Uavg L123.	1 s	0.00200.00%	±5%	
Factor de distorsión de los grupos de armónicos	THDS U L1, THDS U L2, THDS U L3, THDS Uavg L123.	1 s	0.00200.00%	±5%	
Factor de distorsión de los subgrupos de armónicos	THDG U L1, THDG U L2, THDG U L3, THDG Uavg L123.	1 s	0.00200.00%	±5%	
Factor de distorsión parcialmente ponderado	PWHD U L1, PWHD U L2, PWHD U L3, PWHD Uavg L123.	1 s	0.00200.00%	±5%	
Ordenada	U Ordenada	15 min 30 min 1 hora	Un = 230 V : 23,0345,0 V (Ku = 1) 1,38 MV (Ku ≠ 1)	±0,1%	
			Corriente		
RMS	Irms L1, Irms L2, Irms L3, Iavg L123.	1 s 3 s 10 min	In = 5 A: 0.0507.5 A (Ki = 1) 150,0 kA (Ki ≠ 1) In = 1 A: 0.0101.5 A (Ki = 1) 30,0 kA (Ki ≠ 1)	±0,1% ±0,2%	Clase B Clase B Clase A Clase S Clase A ¹⁾ Clase S Clase A ¹⁾ Clase S
Neutro	IN	1 s 3 s	In = 5 A: 0.0507.5 A (Ki = 1) 150,0 kA (Ki ≠ 1) In = 1 A: 0.0101.5 A (Ki = 1) 90,0 kA (Ki ≠ 1)	±0,5% ±0,5% ±0,5% ±0,5% ±0,5%	Clase S
Neutro contable	INC	1 s 3 s 10 min	In = 5 A: 0.15022.5 A (Ki = 1) 450,0 kA (Ki ≠ 1) In = 1 A: 0.0304.5 A (Ki = 1) 450,0 kA (Ki ≠ 1)	±0,2%	
Armónicos	Har1 IL1 Har51 IL1, Har1 IL2 Har51 IL2, Har1 IL3 Har51 IL3.	1 s	0.00100.00%	$I_{m} \ge 3\% I_{nom}$ $\pm 5\% I_{m}$ $I_{m} < 3\% I_{nom}$ $\pm 0,15\% I_{nom}$	Clase I

Factor de distorsión	THD I L1, THD I L2, THD I L3, THD lavg L123.		0.00200.00%	±5%	
Factor de distorsión de los grupos de armónicos	THDS I L1, THDS I L2, THDS I L3, THDS lavg L123.	1 s	0.00200.00%	±5%	
Factor de distorsión de los subgrupos de armónicos	THDG I L1, THDG I L2, THDG I L3, THDG lavg L123.	1 s	0.00200.00%	±5%	
Factor de distorsión parcialmente ponderado	PWHD I L1, PWHD I L2, PWHD I L3, PWHD lavg L123.	1 s	0.00200.00%	±5%	
Ordenada	I Ordenada	30 min 1 hora	In = 5 A: 0.0507.5 A (Ki = 1) 150,0 kA (Ki ≠ 1) In = 1 A:	±0,2%	
			0.0101.5 A (Ki = 1) 150,0 kA (Ki ≠ 1)	,	
			Potencia		
Potencia activa	EnP + L1,		L1, L2, L3 :		
importada	EnP + L2,	_	03e+3 Gwh	±0,5%	
	EnP + L3,		L123:		
Potencia activa	∑EnP + L123. EnP - L1		09e+3 Gwh L1, L2, L3 :		
exportada	EnP - L2,		03e+3 Gwh	±0,5%	
57 tp 67 to to to	EnP - L3,	-	L123:		
	∑EnP - L123.		09e+3 Gwh		
Energía	EnQ ≀ L1,		L1, L2, L3 :	. 0. 50/	
reactiva	EnQ ≀ L2,	_	03e+3 GVArh L123:	±0,5%	
importada	EnQ ₹ L3,		09e+3 GVArh		
F	∑EnQ ₹ L123.				
Energía reactiva	EnQ⊣⊢L1,		L1, L2, L3 : 03e+3 GVArh	±0,5%	
exportada	EnQ⊣⊢L2, EnQ⊣⊢L3,	-	L123:	_0,070	
	ΣEnQ⊣⊢L123.		09e+3 GVArh		
Energía	EnS L1,	_	L1, L2, L3 :		
aparente	EnS L2,		03e+3 GVArh	±0,5%	
	EnS L3,		L123:		
Determin	∑EnS L123.	200 -	09e+3 GVArh		
Potencia activa	P L1, P L2,	200 ms 1 s	In = 5A: -2587.52587.5W		
	P L3,	3 s	-2567.52567.5vv (Ki=1,Ku=1)		
	Pavg L123,		In = 1A:	±0,5%	
	∑P L123.	2 horas	-517.3517.3W (Ki=1,Ku=1)	-	
Potencia	Q L1,		In = 5A:		
reactiva	Q L2,	1 s	-2587.52587.5W		
	Q L3, Qavg L123,		(Ki=1,Ku=1) In = 1A:	±0,5%	
	wavy LIZJ,	IO IIIIII	m = 1A.	±0,5 /0	

	∑Q L123.	2 horas	-517.3517.3W (Ki=1,Ku=1)		
Potencia	S L1,	200 ms	In = 5A:		
aparente	S L2,	1 s	1.52587.5VA (Ki=1,Ku=1)		
	S L3, Savg L123,	3 s 10 min	ln = 1A:	±0,5%	
	Savg £123, ∑S L123.	2 horas	0.23517.5VA (Ki=1,Ku=1)	10,570	
Ordenada	P Ordenada,	Z Horas	In = 5A:		
	Q Ordenada,		-2587.52587.5W		
	S Ordenada.	15 min	(Ki=1,Ku=1)		
			In = 1A:		
			-517.3517.3W (Ki=1,Ku=1)		
			In = 5A: -2587.52587.5W	±0,5%	
		30 min	-2567.52567.5vv (Ki=1,Ku=1)	±0,5%	
		30 111111	In = 1A:		
			-517.3517.3W (Ki=1,Ku=1)		
			In = 5A:		
		1 hora	1.52587.5VA (Ki=1,Ku=1)		
		ППОГА	In = 1A:		
			0.23517.5VA (Ki=1,Ku=1)		
			Otros		
Frecuencia	f	1 s	Para 50Hz	±0.05Hz	Clase S
		10 s	42.5 57.5Hz		
			Para 60Hz	±0.05Hz	Clase S
			51 69Hz		
Factor de	dPF L1,	200 ms			
distorsión de	dPF L2,	1 s			
potencia	dPF L3,	3 s	01	±0,5%	
	dPFavg L123.	10 min			
Factor de	DE L 1	2 horas			
potencia activa	PF L1,	200 ms 1 s			
poteriola activa	PF L3,	3 s	-11	±0,5%	
	PFavg L123.	10 min		20,070	
	J	2 horas			
Factor tgφ	tgφ L1,	200 ms			
	tgφ L2,	1 s	10 10	407	
	tgφ L3,	3 s	-1010	±1%	
	tgφavg L123.	10 min 2 horas			
Ángulo entre la	ω I 1	200 ms			
tensión y la	φ L1, φ L2,	1 s			
corriente	φ L3,	3 s	-180°180°	±0,5%	
	φavg L123.	10 min		,	
		2 horas			
Ángulo de la	∢ U L1-2,	200 ms			
tensión entre	∢ U L2-3,	1 s	Un = 230 V :	. 0 =0/	
fases	∢ U L3-1.	3 s	40,0600,0 V (Ku = 1)	±0,5%	
		10 min	2,39 MV (Ku ≠ 1)		
Temperatura /	T1,	2 horas 1s	Pt100:		
Resistencia	T2	13	-200850°		
Lociotoriola			Pt1000:	±0,2%	
			-200850°	_0,_,	
			Resistance:		
			Resistance:		

			05000Ω					
Crestas	Swell	f=50Hz	Un = 230 V :					
Valles	Dip	10ms ²⁾	23,0345,0 V (Ku = 1)	±0.2%	±1%	Clase A	Class S	
Interrupciones	Interrupt	f=60Hz	1,38 MV (Ku ≠ 1)	I U,2%	I 170	Clase A	Clase S	
·	•	8.3ms ²⁾	,					

- 1) aplicable a medida precisión / calidad solamente
- 2) depende de la frecuencia

Ku = 1...4000,0

Ki = 1...20000.0

I_{m,} , U_m – valores medidos de corrientes y tensiones

I_{nom} , U_{nom} – valores nominales de corrientes y tensiones

3.2. Tarjetas de expansión

La disponibilidad de entradas / salidas depende de la versión ordenada del analizador.

3.2.1 Salidas analógicas

Tipo:	3 salidas de corriente galvánicamente aisladas
Señal de salida:	0/420 mA
Error básico de la salida:	0.5 %
Resistencia de carga:	≤ 500 Ω
Aislamiento:	500 V dc
Tiempo de respuesta:	200 ms

3.2.2 Entradas digitales (binarias)

Tipo:	2 grupos de 3 entradas digitales con masa común
Señal de control:	0/524 V dc
Frecuencia conmutación:	Hasta 4Hz
Aislamiento:	500 V dc

3.2.3. Salidas de alarma

ipo: 8 ó 4 relés electromagnéticos programables,		
	Normalmente abierto (NO)	
Tensión contactos / corriente de	≤ 250 V ac / 1.5 A	
carga:	≤ 30 V dc / 1 A	
Tiempo de respuesta:	200 ms + tiempo de histéresis	

3.3. Condiciones de referencia y condiciones de trabajo nominales

Almacenamiento	Temperatura : -2050°C (-4122°F)
(temperatura y humedad)	Humedad : por debajo de 75% RH (sin condensación)
Trabajo	Temperatura : 050°C (32122°F)
(temperatura y humedad)	Humedad : 75% RH (sin condensación)
Alimentación	85240 V ac, 40400Hz
	90320 V dc

Potencia máxima	Alimentación ≤ 20VA
Consumo en los	tensión ≤ 0,2 VA
circuitos	corriente ≤ 0,2 VA
Factor de cresta	Medida de corriente: 2
aceptable	Medida de tensión: 2
Resistencia al polvo y al	IP65 – de la parte frontal
agua	IP20 – del lado terminales

3.4. Seguridad de funcionamiento según PN-EN 61010-1, aislamiento básico

Categoría de	III
instalación	
Grado de polución	2
Tensión de	RS485: 500V ac/dc
aislamiento	Ethernet: 250V ac / 500V dc
respecto a tierra	Entradas medida temperatura: 500V ac/dc
	Entradas de tensión: 2140 V ac/dc
	Alimentación y circuitos de salida relés: 2140 V ac/dc
	Salidas analógicas: 500V ac/dc
	Entradas digitales: 1200V ac/dc
Tensión máxima de	Para alimentación y circuitos de salida relés: 300 V
trabajo respecto a	Para entradas de medida: 500 V
tierra	Para circuitos RS485, Ethernet, salidas digitales, salidas analógicas
	y entradas digitales: 50 V
Altitud sobre el	< 2000 m
nivel del mar	

3.5. Compatibilidad electromagnética

Emisiones	
electromagnéticas	según EN 61000-6-4
Inmunidad a interferencias	según EN 61000-6-2

3.6. Montaje

Dimensiones	144 Ancho × 144 Alto × 90 mm Profundo (5.669" Ancho × 5.669" Alto
	× 3,897" Profundo)
Dimensiones del	138 ^{-0,5} Ancho x 138 ^{-0,5} Alto mm (5.433 ^{-0,02} " Ancho × 5.433 ^{-0,02} " Alto)
agujero de montaje	
Peso	1.6 kg (5.44 oz.)

3.7. Conformidad a normas

PN EN 61010	Seguridad funcional
PN EN 61000-6-4 PN EN 61000-6-2	Compatibilidad electromagnética
PN EN 50160	Medidas y parámetros analizados

4. Mapa de registros.

En el ND40, los datos del analizador se colocan en registros de 16 y 32 bits. Los bits de los registros de 16 bits están numerados de los de menor peso a los de mayor peso (b0 ... b15). Los registros de 32 bits (4 bytes, 2 x 16 bits) contienen registros flotantes con bytes colocados de la siguiente manera: B4 B3 B2 B1.

Direcciones	Tipo de registro	Descripción
0000 - 0011	Entero (16 bits)	Registros de información y estado
0050 - 0168		Parámetros medidos con acumulación de 200 ms.
0200 - 0318		Parámetros medidos con acumulación de 1 s.
0350 - 0468		Parámetros medidos con acumulación de 3 s.
0500 - 0618		Parámetros medidos con acumulación de 10 min.
0650 - 0768		Parámetros medidos con acumulación de 2 h.
0800 - 0808		Parámetros promediados en tiempo (Ordenado).
0818 - 0824		Frecuencia, temperatura/resistencia.
0830 - 0842	Flotante	Estados de las entradas digitales (binarias).
0850 - 0926	(2 x 16 bits)	Medidores de energía.
0950 - 1012		Factores THD, THDG, THDS, PWHD.
1150 - 1760		Armónicos.
1800 - 1942		Tensiones de semi-onda.

4.1 Registros de información y estado

Registro	Parámetro	3F / 4H	3F / 3H
0000	ID dispositivo	✓	✓
0001	Versión del programa principal	✓	✓
0002	Versión del programa de la tarjeta de medida	✓	✓
0003	Estado 1	✓	✓
0004	Estado 2	✓	✓
0005	Estado 3	✓	√
0006	Tiempo: segundos	✓	√
0007	Tiempo: horas y minutos (horas *100 + minutos)	✓	✓
8000	Fecha: mes y día (mes * 100 + día)	√	√
0009	Fecha: año	√	√
0010	Número de serie	✓	√
0011	Número de serie	√	√

4.1.1 Registros de estados

nni kogica oo ao ootaaco							
Estado 1			Estado 2	Estado 3			
Bit no.	Descripción	Bit no.	Descripción	Bit no.	Descripción		
0	Sin sincronización	0	Sobrecarga inferior UL1	0	Sobrecarga inferior IL11		
1	Error de secuencia de conexión de fase	1	Sobrecarga superior UL1	1	Sobrecarga superior IL1		
2	Cola llena en la tarjeta de medida	2	Sobrecarga inferior UL2	2	Sobrecarga inferior IL2		
3	Error de los parámetros	3	Sobrecarga superior UL2	3	Sobrecarga superior IL2		
	de calibración	4	Sobrecarga inferior UL3	4	Sobrecarga inferior IL3		
		5	Sobrecarga superior UL3	5	Sobrecarga superior IL3		

4.2. Parámetros medidos con acumulación de 3 s

Los parámetros medidos con acumulación de 200 ms, 1 s, 10 min y 2 horas se presentan en el mismo orden que la acumulación mostrada durante 3 s. La diferencia entre las acumulaciones se refiere a la gama de direcciones en las que están disponibles.

Registro	Parámetro		Símbolo		Unidad	3F /	3F/
				1		4H	3H
0350	Tensión RMS		Urms		V	√	00
0352	Corriente RMS		Irms		Α	√	√
0354	Tensión primaria		Ufund		V	√	
0356	Potencia activa		Р		W	√	
0358	Potencia reactiva		Q		var	√	
0360	Potencia aparente	L1	S	L1	VA	√	
0362	Factor de potencia de distorsión.		dPF		-	✓	
0364	Factor de potencia activa		PF		-	√	
0366	Factor tgφ		tgφ		-	√	
0368	Rese	rvado					
0370	Ángulo entre la tensión y la corriente	L1	φ	L1	rad	\checkmark	
0372			φ)	√	
0374	Tensión RMS		Urms		V	√	
0376	Corriente RMS		Irms		Α	√	√
0378	Tensión primaria		Ufund		V	√	
0380	Potencia activa		Р		W	√	
0382	Potencia reactiva		Q		var	√	
0384	Potencia aparente	L2	S	L2	VA	√	
0386	Factor de potencia de distorsión.		dPF		_	√	
0388	Factor de potencia activa		PF		-	√	
0390	Factor tgφ		tgφ		-	√	
0392	Rese	rvado		"	1		
0394	Ángulo entre la tensión y la corriente	L2	φ	L2	rad	√	
0396			φ)	√	
0398	Tensión RMS		Urms		V	√	
0400	Corriente RMS		Irms		Α	√	√
0402	Tensión primaria		Ufund		V	√	<u>0</u> 0
0404	Potencia activa	L3	Р	L3	W	√	
0406	Potencia reactiva		Q		var	√	
0408	Potencia aparente		S		VA	√	
0410	Factor de potencia de distorsión		dPF		-	√	

0412	Factor de potencia activa		PF		_	✓	
0414	Factor tgφ	tgφ		-	✓		
0416	Rese						
0418	Ángulo entre la tensión y la corriente	L3	φ	L3	rad	\	
0420			φ		þ	\	
0422	Tensión promedio		Uavg		V	\checkmark	
0424	Corriente promedio		I avg		Α	\checkmark	\checkmark
0426	Tensión primaria promedio		Ufavg		V	\checkmark	
0428	Suma de potencia activa		ΣΡ		W	\checkmark	
0430	Suma de potencia reactiva	L123	ΣQ	L123	var	\checkmark	
0432	Suma de potencia aparente		ΣS		VA	\checkmark	
0434	Factor de potencia distorsión promedio		dPFavg		-	\checkmark	
0436	Factor de potencia activa promedio		PFavg		-	\checkmark	
0438	Factor tgφ promedio				-	√	
0440	Tensión entre fases L1-2		Umf L1-2		V	√	\checkmark
0442	Tensión entre fases L2-3		Umf L2-3		V	\checkmark	\checkmark
0444	Tensión entre fases L3-1		Umf L3-1		V	√	\checkmark
0446	Tensión entre fases promedio L1-2		Umf avg		V	√	\checkmark
0448	Potencia activa promedio		Pavg		W	√	
0450	Potencia reactiva promedio	L123	Qavg	L123	var	√	
0452	Potencia aparente promedio		Savg		VA	√	
0454	Corriente en hilo neutro		IN		A	√	
0456	Corriente recalculada en hilo neutro		INC		Α	√	
0458	Valor promedio del ángulo entre tensión	L123	φ avg	L123	rad	✓	
0460	y corriente		φ avg)	√	
0462	Ángulo tensión entre fases L1-2	∢ U L1-2)	\checkmark	\checkmark	
0464	Ángulo tensión entre fases L2-3	∢ U L2-3		þ	\	\checkmark	
0466	Ángulo tensión entre fases L3-1	∢ U L3-1		þ	>	√	
0468	Ámgulo promedio tensión entre fases L1	23	∢ U avg	L123	<u> </u>	✓	√
0470	Asimetría de tensión		Vunb		%	√	√

4.3. Parámetros promediados en tiempo (Ordenados)

Registro	Parámeter	Símbolo	Unidad	3F/	3F/
J				4H	3H
0800	Potencia activa promedio (Ordenada)	P Ordenada	W	✓	✓
0802	Potencia reactiva promedio (Ordenada)	Q Ordenada	var	✓	✓
	Potencia aparente promedio (Ordenada)	S Ordenada	VA	✓	✓
	Tensión promedio (Ordenada)	U Ordenada	V	√	√
8080	Corriente promedio (Ordenada)	I Ordenada	Α	√	√

4.4. Frecuencia, temperatura/resistencia

Registro	Parámetro	Símbolo	Unidad	3F/ 4H	3F/ 3H
	Frecuencia para acumulación de 1 s	f 1s	Hz	√	√
0820	Frecuencia para acumulación de 10 s	f 10s	Hz	√	√
0822	Temperatura/Resistencia en canal 1	T1	·C / Ω	√	√
0824	Temperatura/Resistencia en canal 2	T2	·C / Ω	√	√

4.5. Estados de las entradas digitales (binarias)

Registro	Parámetro	Símbolo	Unidad	3F/	3F/
· ·				4H	3H
	Entrada binaria no. 1	BI 1	-	\checkmark	\checkmark
	Entrada binaria no. 2	BI 2	-	✓	✓
	Entrada binaria no. 3	BI 3	-	✓	✓
	Entrada binaria no. 4	BI 4	-	✓	✓
	Entrada binaria no. 5	BI 5	_	√	✓
0842	Entrada binaria no. 6	BI 6	-	✓	✓

4.6. Medidores de energía

Registro	Parámetro		Símbolo	Unidad	3F/	3F/
0850	Energía activa importada	L1	EnP+	MWh	4H ✓	3H ✓
0852	Energía activa importada		EnP+	kWh	✓	✓
0854	Energía activa importada	L2	EnP+	MWh	✓	✓
0856	Energía activa importada		EnP+	kWh	√	√
0858	Energía activa importada	L3	EnP+	MWh	✓	✓
0860	Energía activa importada		EnP+	kWh	√	✓
0862	Suma de energía activa importada	L123	ΣEnP+	MWh	✓	✓
0864	Suma de energía activa importada		ΣEnP+	kWh	√	√
0866	Energía activa exportada	L1	EnP-	MWh	✓	✓
0868	Energía activa exportada		EnP-	kWh	√	✓
0870	Energía activa exportada	L2	EnP-	MWh	√	√
0872	Energía activa exportada		EnP-	kWh	√	✓
0874	Energía activa exportada	L3	EnP-	MWh	√	√
0876	Energía activa exportada		EnP-	kMWh	√	√
0878	Suma de energía activa exportada	L123	ΣEnP-	MWh	√	√
0880	Suma de energía activa exportada		ΣEnP-	kWh	√	√
0882	Energía reactiva importada	L1	EnQ ₹	Mvarh	✓	✓
0884	Energía reactiva importada		EnQ }	kvarh	√	✓
0886	Energía reactiva importada	L2	EnQ ₹	Mvarh	√	√
0888	Energía reactiva importada		EnQ ₹	kvarh	√	√
0890	Energía reactiva importada	L3	EnQ ₹	Mvarh	√	√
0892	Energía reactiva importada		EnQ ₹	kvarh	√	√
0894	Suma de energia reactiva importada	L123	ΣEnQ	Mvarh	√	✓
0896	Suma de energia reactiva importada		ΣEnQ	kvarh	√	√
0898	Energía reactiva exportada	L1	EnQ ⊣⊢	Mvarh	√	\checkmark
0900	Energía reactiva exportada		EnQ ⊣⊢	kvarh	√	✓
0902	Energía reactiva exportada	L2	EnQ ⊣⊢	Mvarh	√	√
0904	Energía reactiva exportada		EnQ ⊣⊢	kvarh	√	√
0906	Energía reactiva exportada	L3	EnQ ⊣⊢	Mvarh	√	√
0908	Energía reactiva exportada		EnQ ⊣⊢	kvarh	√	√
0910	Suma de energía reactiva exportada	L123	ΣEnQ ⊣⊢	Mvarh	√	√
0912	Suma de energía reactiva exportada		ΣEnQ ⊣⊢	kvarh	√	✓
0914	Energía aparente	L1	EnS	MVAh	√	√
0916	Energía aparente		EnS	kVAh	✓	✓
0918	Energía aparente	L2	EnS	MVAh	✓	✓
0920	Energía aparente		EnS	kVAh	√	√
0922	Energía aparente	L3	EnS	MVAh	√	√
0922	Energía aparente		EnS	kVAh	√	\checkmark

0926	Suma de energía aparente	L123	ΣEnS	MVAh	\checkmark	\checkmark	
0928	Suma de energía aparente		ΣEnS	kVAh	√	√	

Recálculo de medidores de energía disponibles en los registros, por ejemplo EnP + L1: EnP + L1 = (valor de registro 0850 x 1000) + valor de registro 0852) [kWh] Otros valores de energía se recalculan de manera similar.

4.7. Registros THD, THDS, THDG y PWHD

Registro	Parámetro	Símbolo	Unidad	3F/ 4H	3F/ 3H
0950	Factor THD de tensión L1	THD U L1	%	√	
0952	Factor THD de tensión L2	THD U L2	%	√	
0954	Factor THD de tensión L3	THD U L3	%	✓	
0956	Factor THD promedio de tensión L123	THD Uavg L123	%	✓	
0958	Factor THD de corriente L1	THD I L1	%	✓	√
0960	Factor THD de corriente L2	THD I L2	%	\checkmark	✓
0962	Factor THD de corriente L3	THD I L3	%	\checkmark	✓
0964	Factor THD promedio de corriente L123	THD lavg L123	%	\checkmark	\checkmark
0966	Factor THDS de tensión L1	THDS U L1	%	✓	
0968	Factor THDS de tensión L2	THDS U L2	%	\checkmark	
0970	Factor THDS de tensión L3	THDS U L3	%	√	
0972	Factor THDS promedio de tensión L123	THDS Uavg L123	%	\checkmark	
0974	Factor THDS de corriente L1	THDS I L1	%	√	√
0976	Factor THDS de corriente L2	THDS I L2	%	√	√
0978	Factor THDS de corriente L3	THDS I L3	%	✓	√
0980	Factor THDS promedio de corriente L123	THDS lavg L123	%	✓	√
0982	Factor THDG de tensión L1	THDG U L1	%	✓	
0984	Factor THDG de tensión L2	THDG U L2	%	√	
0986	Factor THDG de tensión L3	THDG U L3	%	✓	
0988	Factor THDG promedio de tensión L123	THDG Uavg L123	%	\checkmark	
0990	Factor THDG de corriente L1	THDG I L1	%	✓	✓
0992	Factor THDG de corriente L2	THDG I L2	%	√	√
0994	Factor THDG de corriente L3	THDG I L3	%	✓	✓
0996	Factor THDG promedio de corriente L123	THDG lavg L123	%	✓	\
0998	Factor PWHD de tensión L1	PWHD U L1	%	√	
1000	Factor PWHD de tensión L2	PWHD U L2	%	✓	
1002	Factor PWHD de tensión L3	PWHD U L3	%	✓	
1004	Factor PWHD promedio de tensión L123	PWHD Uavg L123	%	√	
1006	Factor PWHD de corriente L1	PWHD I L1	%	√	√
1008	Factor PWHD de corriente L2	PWHD I L2	%	√	√
1010	Factor PWHD de corriente L3 t	PWHD I L3	%	√	✓
1012	Factor PWHD promedio de corriente L123	PWHD lavg L123	%	√	✓

4.8. Registros de Armónicos

Registro	Parámetro		Símbol	0	Unidad	3F/ 4H	3F/ 3H
1150	Armónico no. 1		Har1		%	√	
1152	Armónico no. 2	U L1	Har2	U L1	%	√	
1154	Armónico no. 3		Har3		%	√	
1246	Armónico no. 49		Har49		%	√	

1248	Armónico no. 50	U L1	Har50	U L1	%	✓	
1250	Armónico no. 51		Har51		%	√	
1252	Armónico no. 1		Hr1		%	✓	
1254	Armónico no. 2	U L2	Hr2	U L2	%	√	
1256	Armónico no. 3		Hr3		%	√	
1348	Armónico no. 49		Hr49		%	√	
1350	Armónico no. 50	U L2	Hr50	U L2	%	√	
1352	Armónico no. 51		Hr51		%	\checkmark	
1354	Armónico no. 1		Hr1		%	√	
1356	Armónico no. 2	U L3	Hr2	U L3	%	\checkmark	
1358	Armónico no. 3		Hr3		%	√	
1450	Armónico no. 49		Hr49		%	√	
1452	Armónico no. 50	U L3	Hr50	U L3	%	√	
1454	Armónico no. 51		Hr51		%	\checkmark	
1456	Armónico no. 1		Har1		%	√	
1458	Armónico no. 2	I L1	Har2	I L1	%	\checkmark	
1460	Armónico no. 3		Har3		%	√	
••		•••					
1552	Armónico no. 49		Har49		%	√	
1554	Armónico no. 50	I L1	Har50	I L1	%	√	
1556	Armónico no. 51		Har51		%	\checkmark	
1558	Armónico no. 1		Har1		%	√	
1560	Armónico no. 2	I L2	Har2	I L2	%	√	
1562	Armónico no. 3		Har3		%	\checkmark	
1654	Armónico no. 49		Har49		%	✓	
1656	Armónico no. 50	I L2	Har50	I L2	%	√	
1658	Armónico no. 51		Har51		%	\checkmark	
1660	Armónico no. 1		Har1		%	✓	
1662	Armónico no. 2	IL3	Har2	IL3	%	√	
1664	Armónico no. 3		Har3		%	√	
1756	Armónico no. 49		Har49		%	√	
1758	Armónico no. 50	I L3	Har50	I L3	%	√	
1760	Armónico no. 51		Har51		%	√	

4.9. Registros tensiones de semi-onda

Registro	Parámetro	50 Hz	60 Hz	Símbolo		Unidad	3F/ 4H	3F/ 3H
1800	Tensión semi-onda no. 1	√	√	Uhalf1		V	√	
1802	Tensión semi-onda no. 2 U L1	√	√	Uhalf2	U L1	V	√	
1454	Tensión semi-onda no. 3	√	√	Uhalf3		V	✓	
1840	Tensión semi-onda no. 21	×	√	Uhalf21		V	✓	
1842	Tensión semi-onda no. 22	×	√	Uhalf22		V	✓	
1844	Tensión semi-onda no. 23 ^{U L1}	×	√	Uhalf23	U L1	V	✓	
1846	Tensión semi-onda no. 24	×	√	Uhalf24		V	✓	
1848	Tensión semi-onda no. 1	√	√	Uhalf1		V	✓	

1850	Tensión semi-onda no. 2 U L2	√ √ Uhalf2 U L2 V ✓ U
1852	Tensión semi-onda no. 3	√ √ Uhalf3 V ✓ □
1888	Tensión semi-onda no. 21	× √ Uhalf21 V ✓ □
1890	Tensión semi-onda no. 22	× √ Uhalf22 V ✓ □
1892	Tensión semi-onda no. 23 ^U L2	× / Uhalf23 U L2 V
1894	Tensión semi-onda no. 24	× √ Uhalf24 V ✓ □
1896	Tensión semi-onda no. 1	√ √ Uhalf1 V ✓ □
1898	Tensión semi-onda no. 2 U L3	√ √ Uhalf2 U L3 V ✓ □
1900	Tensión semi-onda no. 3	√ √ Uhalf3 V ✓ □
1936	Tensión semi-onda no. 21	× / Uhalf21 V V
1938	Tensión semi-onda no. 22	× √ Uhalf22 V ✓ □
1940	Tensión semi-onda no. 23 ^U L3	× / Uhalf23 U L3 V
1942	Tensión semi-onda no. 24	× / Uhalf24 V / U

5. Codificación

Analizador/Grabador Parámetros de Red ND40	Χ	Χ	XX	Е	Χ
Clase de medida:					
Clase S	0				
Clase A/S	1				
Entradas/salidas adicionales:		_			
Ninguna		0			
8 salidas relé		1			
6 entradas digitales, 4 salidas relé		2			
6 entradas digitales, 3 salidas analógicas		3			
Versiones:					
Estandar			00		
Especial*			XX		
Pruebas de aceptación:					
Sin ningún requerimiento extra					0
Con certificado de inspección de Calidad					1
Según requerimiento del cliente *					Χ

^{*}previo acuerdo con el fabricante