

ESPAÑOL

INDICADOR MULTIFUNCIÓN

FRANÇAIS

INDICATEUR MULTIFONCTION

ENGLISH

MULTIFUNCTION INDICATOR

CE

INDICE

Introducción al modelo BETA-M	3
Consideraciones generales de seguridad	3
Mantenimiento / Garantía / Declaración Conformidad / Reciclado	4
Opciones de salida	5
Dimensiones y montaje	6
Alimentación y Conexionado	7
Descripción de las funciones del panel	8
Instrucciones de programación	9
Configuración de entrada	10
Programación del rango de entrada Proceso	11
Conexionado entrada Proceso	12
Programación entrada Célula de Carga	13
Conexionado entrada Célula de Carga	14
Programación entrada Pt100	14
Conexionado sonda Pt100	15
Programación entrada Termopar	16
Conexionado entrada Termopar	17
Programación y conexionado Potenciómetro	18
Programación Display	19
Integrador	25
Opciones de Display	27
Cálculo de Volúmenes	29
Funciones por teclado	32
Funciones por Conector	33
Bloqueo de la Programación	35
Nuevas Funciones del modulo Relés	37
Modos de TARA	38
Función "SENSOR BREAK" y "FAIL SAFE"	
Función "R.O.C" y "DOSE"	40
Especificaciones Técnicas	41
ANEXO 1	
List of Commands (ASCII, ISO1745, MODBUS RTU)	122
Adress of the variables in the memory (MODBUS RTU)	

INFORMACIÓN GENERAL

Este manual no constituye un contrato o compromiso por parte de Diseños y Tecnología, S.A. Toda la información contenida en este documento está sujeta a cambios sin previo aviso.

Introducción al modelo BETA-M

Este modelo BETA-M de la serie KOSMOS, incorpora nuevas características técnicas y funcionales. Nuevos filtros, bloqueo de la programación por software, funciones lógicas programables y acceso directo a la programación de los valores de setpoints.

El modelo BETA-M de la SERIE KOSMOS es un indicador digital multifunción que permite al usuario la configuración de la etapa de entrada para ser utilizado con los siguientes tipos:

- ENTRADA PROCESO (V, mA) ENTRADA CELULA DE CARGA (mV/V) ENTRADA SONDA Pt100
- ENTRADA TERMOPAR (J, K, T, R, S, E)
- ENTRADA POTENCIÓMETRO

Esta configuración se realiza totalmente por software, sin necesidad de cambiar ninguna carta ya que la opción de entrada permite la conexión directa de cualquiera de los transductores, transmisores o elementos primarios. Dispone de un totalizador/integrador de 8 dígitos que permite acumular cantidades a modo de totalizador+contador de lotes o integrar la medida usando una base de tiempos para lectura de gasto por ciclo, por día, etc.

Las funciones del instrumento básico comprenden la visualización de la variable de entrada, lectura y memorización de valores máximo y mínimo (pico/valle), función tara y reset, además de cuatro entradas lógicas con funciones progra-mables (hasta 36) para control a distancia.

Permite el bloqueo parcial o total de los parámetros de programación mediante un código de seguridad de cuatro cifras así como la posibilidad de retorno a la configuración de fábrica.

Los instrumentos modelo BETA-M pueden además incorporar diversas opciones de salidas de control analógicas o digitales (por relés u optos) y de comunicación en formato paralelo BCD o serie RS232C o RS485

Todas las salidas están optoaisladas respecto de la señal de entrada y de la alimentación general.

El instrumento básico es un conjunto soldado compuesto por la placa base, el display, el filtro de alimentación y la opción multientrada que van alojadas en sus conectores correspondientes

Consideraciones generales de seguridad

Todas las indicaciones e instrucciones de instalación y manipulación que aparecen en este manual deben tenerse en cuenta para garantizar la seguridad personal y prevenir daños sobre este equipo o sobre los equipos que puedan conectarse a ellos.

La seguridad de cualquier sistema incorporado a estos equipos es responsabilidad del montador del sistema.

Si los equipos son utilizados de manera diferente a la prevista por el fabricante en este manual, la protección proporcionada por los mismos puede verse comprometida.

Identificación de simbolos

ATENCIÓN: Posibilidad de peligro.

Leer completamente las instrucciones relacionadas cuando aparezca este símbolo con el fin de conocer la naturaleza del peligro potencial y las acciones a tomar para evitarlo.

ATENCIÓN: Posibilidad de choque eléctrico.

Equipo protegido por aislamiento doble o aislamiento reforzado

MANTENIMIENTO

Para garantizar la precisión del instrumento, es aconsejable verificar el cumplimiento de la misma de acuerdo con las especificaciones técnicas presentes en este manual, realizando calibraciones en periodos de tiempo regulares que se fijarán de acuerdo a los criterios de utilización de cada aplicación.

La calibración o ajuste del instrumento deberá realizarse por un Laboratorio Acreditado ó directamente por el Fabricante.

La reparación del equipo deberá ser llevada a cabo únicamente por el fabricante o por personal autorizado por el mismo.

Para la limpieza del frontal del equipo bastará únicamente con frontarlo con un paño empapado en agua jabonosa neutra. **NO UTILIZAR DISOLVENTES!**.

GARANTÍA

Los instrumentos están garantizados contra cualquier defecto de fabricación o fallo de materiales por un periodo de 5 AÑOS desde la fecha de su adquisición.

En caso de observar algún defecto o avería en la utilización normal del instrumento durante el periodo de garantía, diríjase al distribuidor donde fue comprado quien le dará instrucciones oportunas.

Esta garantía no podrá ser aplicada en caso de uso indebido, conexionado o manipulación erróneos por parte del comprador.

El alcance de esta garantía se limita a la reparación del aparato declinando el fabricante cualquier otra responsabilidad que pudiera reclamársele por incidencias o daños producidos a causa del mal funcionamiento del instrumento.

Declaración de conformidad

Para obtener la declaración de conformidad correspondiente a este modelo entre en nuestra web **www.ditel.es**, donde dicho documento, el manual técnico y resto de información de interés, pueden ser descargados libremente.

Instrucciones para el reciclado

Este aparato electrónico se engloba dentro del ámbito de aplicación de la Directiva **2002/96/CE** y como tal, está debidamente marcado con el símbolo que hace referencia a la recogida selectiva de aparatos eléctricos que indica que al final de su vida útil, usted como usuario, no puede deshacerse de él como un residuo urbano normal.

Para proteger el medio ambiente y de acuerdo con la legislación europea sobre residuos eléctricos y electrónicos de aparatos puestos en el mercado con posterioridad al 13.08.2005, el usuario puede devolverlo, sin coste alguno, al lugar donde fué adquirido para que de esta forma se proceda a su tratamiento y reciclado controlados.

CONTENIDO DEL EMBALAJE

- Quick Start del producto
- El instrumento de medida digital BETA-M. •
- Accesorios para montaje en panel (junta de estangueidad y pinzas de sujeción).
- Accesorios de conexionado (conectores enchufables y tecla de accionamiento).
- Etiqueta de conexionado incorporada a la caja del instrumento BETA-M.
- 2 Conjuntos de etiquetas con unidades de ingeniería.

Alimentación

Si el instrumento se ha solicitado con alimentación 115/230V AC, se suministra para la tensión de 230 V. Si el instrumento se ha solicitado con alimentación 24/48 V AC, se suministra para la tensión de 24 V.

Verificar la etiqueta de conexionado antes de realizar la conexión a la red. \Rightarrow

Instrucciones de programación

El instrumento dispone de un software con seis módulos de programación independientes para configurar la entrada, el display, los puntos de consigna, la salida analógica, la salida de comunicaciones y entradas lógicas.

Tipos de entrada (págs. 10 a 19)

Verificar la correcta configuración de la señal prevista antes de conectar la entrada. ⇒

Bloqueo de la programación

El instrumento se suministra con la programación desbloqueada, dando acceso a todos los niveles de programación. El bloqueo se efectúa por software mediante un código de seguridad que puede personalizarse.

OPCIONES DE SALIDA

Las opciones 2RE, 4RE, 4OP y 4OPP son alternativas y sólo puede alojarse una de ellas. Las opciones RS2, RS4 también son alternativas y sólo puede montarse una de ellas. La opción **BCD** excluye cualquier otra opción de salida. Pueden estar presentes y operar de forma simultánea hasta 3 opciones de salida: (excepto la BCD)

- ANA (SALIDA ANALOGICA 4-20mA o 0-10V)

- RS232C, RS485 (sólo una)
- 2 RELES, 4 RELES ó 4 OPTOS (sólo una).

Para mayor información sobre características, aplicaciones, montaje y programación, referirse al manual específico que se suministra con cada opción.

DIMENSIONES Y MONTAJE

Para montar el instrumento en panel, abrir un orificio de dimensiones 92 x 45mm e introducir el instrumento en el orificio por la parte delantera colocando la junta de estanqueidad entre éste y el panel.

Colocar las pinzas de sujeción en las guías laterales de la caja (una a cada lado) y deslizarlas hasta que hagan contacto con la parte posterior del panel.

Presionar ligeramente para ajustar la carátula frontal y dejar las pinzas sujetas en las uñas de retención de la caja.

Para desmontar el instrumento del panel, desbloquear las pinzas levantando ligeramente las lengüetas traseras y deslizarlas en el sentido inverso al de montaje.

JUNTA DE ESTANQUEIDAD PINZAS DE SUJECIÓN

> LIMPIEZA: La carátula frontal debe ser limpiada solamente con un paño empapado en agua jabonosa neutra. NO UTILIZAR DISOLVENTES

ALIMENTACIÓN Y CONEXIONADO

Si es necesario cambiar alguna de las configuraciones físicas del aparato, desmontar la caja como se indica.

115/230 V AC: Los instrumentos con alimentación a 115/230 V AC, salen de fábrica preparados para conexión a 230 V AC (mercado USA 115 V AC). Si se desea cambiar la alimentación a 115 V AC, establecer los puentes tal y como se indica en la figura y en la tabla. La etiqueta del instrumento deberá ajustarse a los cambios de alimentación.

24/48 V AC: Los instrumentos con alimentación de 24/48 V AC, salen de fábrica preparados para conexión a 24 V AC. Si se desea cambiar la alimentación a 48 V AC, establecer los puentes tal y como se indica en la figura y en la tabla.

La etiqueta del instrumento deberá ajustarse a los cambios de alimentación.

Selector de alimentación

230 V AC (BETA-M) 48 V AC (BETA-M2)

CONEXIÓN ALIMENTACIÓN

Pin	1	2	3	4	5
230V AC	-				
115V AC					-
48V AC	-				
24V AC					-

Tabla 1. Posición de los puentes del selector.

Selector de alimentación 115 V AC (BETA-M) 24 V AC (BETA-M2)

INSTALACIÓN

Para cumplir los requisitos de la norma EN61010-1, en Equipos permanentemente conectados a la red, es obligatoria la instalación de un magnetotérmico o disyuntor en las proximidades del equipo que sea fácilmente accesible para el operador y que este marçado como dispositivo de protección ATENCIÓN

Para garantizar la compatibilidad electromagnética deberán tenerse en cuenta las siguientes recomendaciones:

Los cables de alimentación deberán estar separados de los cables de señal y nunca se instalarán en la misma conducción.

Los cables de señal deben de ser blindados y conectar el blindaje al borne de tierra (pin2 CN1).

La sección de los cables deben de ser $\geq 0.25 \text{ mm}^2$

Si no se respetan estas instrucciones, la protección contra sobretensiones no está garantizada.

CONECTORES

Para efectuar las conexiones, extraer la regleta que viene enchufada en el conector del aparato, pelar el cable dejando entre 7 y 10 mm al aire e introducirlo en el ter-minal adecuado presionando la tecla para abrir la pinza interior.

Proceder de la misma forma con todos los terminales y volver a enchufar la regleta en el conector.

Los terminales de las regletas admiten cables de sección comprendida entre 0.08

 mm^2 y 2.5 mm^2 (AWG 26 ÷ 14). Las regletas incorporan unos embudos de plástico incrustados en cada terminal para mantener sujetos los cables de sección menor de 0.5 mm².

Para cables de sección superior a 0.5 mm² deberán retirarse los embudos.

DESCRIPCIÓN DE LAS FUNCIONES EN PANEL EN MODO RUN

DESCRIPCIÓN DE LAS FUNCIONES EN PANEL EN MODO PRO

INSTRUCCIONES DE PROGRAMACIÓN

¿Como entrar en el modo de programación? Primero, conectar el instrumento a la red, automáticamente, se realizará un test de display y se visualizará la versión de software, luego el instrumento se

situara en el modo de trabajo. Segundo, presionar la tecla para entrar en el modo de programación, en el display secundario aparecerá la indicación "-Pro-".

¿Como salir del modo de programación?

Desde el modo de programación, indicación "-Pro-", presionar "qUIt" en el display secundario, volviendo el instrumento al modo de trabajo. Cualquier modificación que se haya realiza-do en la programación no se guardará, permaneciendo la anterior.

¿Como guardar los parámetros de programación? Si queremos guardar los cambios que hemos realizado en la programación, debemos volver al inicio de la programación,

indicación "-Pro-". Desde aquí presionar la tecla enterna de tecla, aparecerá la indicación "StorE" durante unos segundos, mien-tras se memorizan todos los datos en memoria. Luego el instrumento volverá a estar en el modo de trabajo.

¿Como interpretar las instrucciones de programación?

El software de programación esta formado por una serie de menús y submenús organizados jerárquicamente. En la figu-

ra adjunta, a partir de la indicación "-Pro-", pulsar repetidamente para acceder a los menús de programación. Los menús 30, 40 y 50 sólo aparecerán si está instalada la tarjeta opción de setpoints, salida analógica o RS, respectivamente.

Seleccionando un menú, el acceso a los diferentes submenus de programación se realiza mediante la tecla 🗰 .

(×

Ĩ.

HOLD

TARE

CONFIGURACIÓN DE LA ENTRADA

La figura adjunta muestra el menú 10 de configuración de entrada. Dispone de cinco submenús, cada uno de ellos enmarcados por guiones, correspondientes a la programación de los diferentes tipos de entrada: proceso, célula de carga, termómetro Pt100, termómetro termopar y potenciómetro. Los datos solicitados en cada caso se indican a continuación.

PROGRAMACIÓN DEL RANGO DE ENTRADA

Para acceder al menú 10 de configuración de la entrada, presionar para pasar del modo de trabajo al modo de programación y a continuación pulsar la

tecla hasta situarse en la indicación "CnFInP".

Programación entrada Proceso

Como indicador proceso esta destinado a la medida de todo tipo de variables de proceso con indicación directa en unidades de ingeniería. Los parámetros a configurar como indicador de proceso son: Tipo de entrada en voltios (tensión) o en miliamperios (corriente).

Rangos de entrada en tensión ó en corriente:

"1V" rango -1V a +1V, "10V" rango -10V a +10V,

"1mA" rango -1mA a +1mA, "20mA" rango -20mA a +20mA,

Excitación: Las tensiones de excitación disponibles son 24V y 10V ó 5V. Seleccionando la excitación de 10V, puede cambiarse a 5V mediante la colocación de un puente interno situado en el lado exterior de la carta de entrada.

Submenú 11 - PROCESO

La figura muestra la indicación "-Proc-" correspondiente al inicio del menú de configuración de la entrada proceso. Pulse una de las siguientes teclas:

ENTER Acceso a la programación de la entrada proceso.

Pasar al Submenú 12 - Célula de carga

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del tipo de entrada, indicación "InPUt".

Pulsar la tecla para seleccionar el tipo de entrada deseado ["**VoLt**" = ten-sión, "**AMP**" = corriente].

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del rango de de entrada, indicación "rAnGE".

Pulsar la tecla para seleccionar el rango de entrada ["1-V" ó "10-V" si la entrada es en tensión, "1mA" ó "20mA" si la entrada es en corriente]. ENTER

Validar los datos y acceder al siguiente paso de programa.

ESC

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Pulsar la tecla para seleccionar la excitación ["10-V" ó "24-V"]. Si va a utilizarse la excitación de 5V, debe colocarse previamente el puente interno según se indica en la figura y seleccionar la opción 10V.

ESC

Validar la configuración de la entrada proceso y retornar al inicio de la programación "-Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Puente ON = EXC. 5V Puente OFF = EXC. 10V

CONEXIONADO ENTRADA PROCESO

PIN 6 =	-EXC	[salida excitación (-)]
PIN 5 =	+EXC	[salida excitación (+)]
PIN 4 =	+IN	[entrada mA (+)]
PIN 3 =	-IN	[entrada V (-) ó mA (-)]
DTNI O		F I I 1 (/ .)7

PIN 2 = +IN [entrada V (+)] PIN 1 = N/C [no conectado]

Consultar las recomendaciones de conexionado en la página 7.

Conexión transductor (V, mA)

Conexión transductor (V, mA)

EXCITACIÓN SUMINISTRADA POR BETA

CN3	- EXC	- EXC	conexión a 4 hilos
	- LX0	- LAO	TRANSDUCTOR
	+ EXC	+ EXC	0 - 1mA
	+ IN (mA)	+ OUT	0-5mA
2	- IN (mA)	- OUT	4-20mA

conexión a 3 hilos

CNI2			
	+ EXC	+ EXC	TRANSDUCTOR 0-1mA
	+ IN (mA)	+ OUT	0-5mA 0-20mA
	- IN (mA)	COMM	4 - 20mA

conexión a 2 hilos (sólo 4-20mA)

PROGRAMACIÓN DEL RANGO DE ENTRADA

Programación entrada Célula de Carga

Consulte la documentación del fabricante de sus células, sobre todo las especificaciones de sensibilidad y la tensión de excitación requerida para su alimentación.

Como indicador para célula de carga su función será la medida de cargas (peso, presión, torsión...) ejercidas sobre un dispositivo conectado a diversos transductores tipo puente como células de carga, que proporcionen unos niveles de señal de hasta ±300 mV.

Las dos tensiones de excitación disponibles por el instrumento son 10 y 5V. La selección se efectúa mediante la configuración del puente interno de excitación. De esta forma, pueden conectarse hasta 4 células en paralelo con excitación de 10V y hasta 8 células en paralelo con excitación a 5V, todas ellas sin necesidad de fuente de alimentación exterior (ver conexión).

Ejemplo:

Supongamos 4 células con sensibilidad 2mV/V a las que se aplica una excitación de 10V; cada una dará una señal de entrada máxima de 20mV, siendo el total 20mV al estar conectadas en paralelo. Si en el mismo caso la excitación fuese 5V, la máxima señal de entrada sería de 10mV.

La configuración por software requiere como único parámetro necesario el rango de entrada, que deberá ajustarse a la máxima señal de entrada prevista.

Hay cuatro rangos: ± 15 mV, ± 30 mV, ± 60 mV y ± 300 mV.

Ejemplo:

Un proceso de pesaje genera, con la carga máxima una señal de entrada de 12mV. Con estos datos, el mejor rango de entrada a seleccionar sería el de "15mV".

FUNCION BATCH

Funcionamiento por entrada lógica

Esta función, definida como función lógica nº30 en la página 34, está diseñada para uso en procesos de pesaje donde se requiere totalización de la cantidad de medidas acumulados.

Un sensor conectado a la entrada lógica de función 30, detecta la colocación de un peso y envía un impulso que ordena al aparato sumar el valor de display al totalizador e incrementar un contador de número de medidas.

Los valores del totalizador y del contador de lotes quedan memorizados en una desconexión del instrumento. La visualización de estos parámetros se realiza en el display secundario de forma permanente según selección.

Submenú 12 - CÉLULA DE CARGA

La figura muestra la indicación "-LoAd-" correspondiente al inicio del menú de configuración de la entrada célula de carga. Pulse una de las siguientes teclas:

ENTER Acceso a la programación de la entrada célula de carga.

Pasar al Submenú 13 - Termómetro Pt100

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del tipo de entrada, indicación "rAnGE".

Pulsar la tecla \checkmark para seleccionar el rango de entrada deseado en mV ["**300mV**" = de -300mV a +300mV, "**60mV**" = de -60mV a +60mV, "**30mV**" = de -30mV a +30mV ó "**15mV**" = de -15mV a +15mV].

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

ESC

CONEXIONADO ENTRADA CÉLULA DE CARGA

- PIN 6 =-EXC [salida excitación (-)]
- PIN 5 = +EXC [salida excitación (+)]
- PIN 4 = No conectado
- PIN 3 =-mV [entrada mV (-)]
- PIN 2 = No conectado
- PIN 1 = +mV [entrada mV (+)]

Consultar las recomendaciones de conexionado en la página 7.

Conexión célula de carga (mV/V)

PROGRAMACIÓN DE TERMÓMETRO PT100 Y TERMOPAR

Programación entrada termómetro Pt100

Cuando se configura el instrumento como termómetro sonda Pt100 a tres hilos los rangos de temperatura y resolución disponibles son:

Entrada	Rango (res. 0.1 °)	Rango (res. 1º)
D+100	-100.0 a +800.0 °C	-100 a +800 °C
1100	-148.0 a +1472.0 °F	-148 a +1472 °F

La programación permite seleccionar la unidad de temperatura (Celsius o Fahrenheit), la resolución (grados o décimas de grados) y un offset de display.

Normalmente no será necesario programar ningún valor de offset, excepto en el caso que exista una diferencia conocida entre la temperatura captada por la sonda y la temperatura real.

Esta diferencia puede corregirse introduciendo un desplazamiento en puntos de display de -9.9 a +9.9, con una resolución de 0.1°, o de -99 a +99, con una resolución de 1°.

Ejemplo:

Ún proceso de control de temperatura, tiene situada la sonda Pt100 en un parte del proceso donde hay 10 grados menos de temperatura que en el punto donde se desea efectuar el control. Introduciendo un desplazamiento de display de 10 puntos, con una resolución de 1 grado, la lectura quedaría corregida.

Los parámetros a configurar como termómetro Pt100 son:

- Escala en grados Celsius "°C" ó Fahrenheit "°F".
- Resolución en décimas de grado "0'1º" ó en grados "1º".

El valor de offset es programable hasta ±9.9° con resolución de décimas, o hasta ±99° con resolución de grados. Introduciendo estos parámetros de configuración de la entrada Pt100, la linealización y la escala del display se ajustan automáticamente.

ESC

Submenú 13 - TERMÓMETRO Pt100

La figura muestra la indicación "-Pt100" correspondiente al inicio del menú de configuración de la entrada Pt100. Pulse una de las siguientes teclas:

Acceso a la programación de la entrada termómetro Pt100.

Pasar al Submenú 14 - Termómetro termopar.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación de las unidades de temperatura, indicación "-Pt100".

- Pulsar la tecla para seleccionar las unidades deseadas ["**°C**" = Celsius ó "**°F**" = Fahrenheit].
- **ENTER** Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación de la resolución, indicación "-Pt100".

Pulsar la tecla para seleccionar la resolución deseada ["**1**º"= resolución en grados ó "**0.1**º"= resolución en décimas de grado]

L^II^I^I = resolucion en grados o "**0.1**^{II} = resolucion en decimas de grado

- Validar los datos y acceder al siguiente paso de programa.
- Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del desplazamiento del display, indicación "oFFSEt".

Presionar sucesivamente la tecla 🔦 , para incrementar el dígito en intermi-

tencia y la tecla \checkmark , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo]. El valor de offset es programable hasta ±9.9 ° con resolución de décimas, o hasta ±99 ° con resolución de grados. El led "TARE" permanecerá activado siempre que el offset contenido en memoria sea distinto de cero.

ESC

Validar la configuración de la entrada Pt100 y retornar al inicio de la programación "Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

CONEXIONADO ENTRADA PT100

PIN 6 = No conectado

- PIN 5 = Común Pt100
- PIN 4 = No conectado
- PIN 3 = Pt100
- PIN 2 = No conectado
- PIN 1 = Pt100

Resolución 0,1°: ...Offset ±9,9° Resolución 1°:Offset ±99°

Esquema de conexión de la señal de entrada para **termómetro Pt100** a tres hilos.

Consultar las recomendaciones de conexionado en la página 7.

Programación entrada TERMOPAR

Cuando se configura el instrumento como termómetro termopar los rangos de temperatura y resolución disponibles son:

Entrada	Rango (res. 0,1 °)	Rango (res. 1 ^o)
тс »1″	"-200,0 a +1100,0 °C	-200 a +1100 °C
	-328,0 a +2012,0 °F	-328 a +2012 ºF
TC \\K"	-200,0 a +1200,0 °C	-200 a +1200 °C
IC K	-328,0 a +2192,0 °F	-328 a +2192 ºF
тс »т″	-150,0 a +400,0 °C	-150 a +400 ⁰C
	-238,0 a +752,0 ºF	-238 a +752 ºF
TC \\D"	-50,0 a +1750,0 °C	-50 a +1750 ⁰C
IC K	-58,0 a +3182,0 °F	-58 a +3182 ºF
TC \\C"	-50,0 a +1750,0 °C	-50 a +1750 ⁰C
	-58,0 a +3182,0 °F	-58 a +3182 ºF
TC "F"	-200,0 a +1000,0 °C	-200 a +1000 °C
	-328,0 a +1832,0 °F	-328 a +1832 ºF

La programación permite seleccionar el tipo de termopar, la escala de temperatura (Celsius o Fahrenheit), la resolución (grados o décimas de grados) y un offset de display.

Normalmente no será necesario programar ningún valor de offset, excepto en el caso que exista una diferencia conocida entre la temperatura captada por la sonda y la temperatura real.

Esta diferencia puede corregirse introduciendo un desplazamiento en puntos de display de -9.9 a +9.9, con una resolución de 0.1° , o de -99 a +99, con una resolución de 1° .

Ejemplo:

Un proceso de control de temperatura, tiene situado la sonda termopar en un parte del proceso donde hay 5 grados más de temperatura que en el punto donde se desea efectuar el control. Introduciendo un desplazamiento de display de -5 puntos, con una resolución de 1 grado, la lectura quedaría corregida.

Los parámetros a configurar son:

- Tipo de entrada termopar [J, K, T, R, S, E].
- Escala en grados Celsius "°C" ó Fahrenheit "°F".
- Resolución en décimas "0.1º" ó en grados "1º".
- Offset. El valor de offset es programable hasta $\pm 9.9^{\circ}$ con resolución de décimas, o hasta $\pm 99^{\circ}$ en grados.

Introduciendo estos parámetros de configuración, la linealización y la escala del display se ajustan automáticamente.

Submenú 14 - TERMÓMETRO TERMOPAR

La figura muestra la indicación "-tc-" correspondiente al inicio del menú de configuración de la entrada termopar. Pulse una de las siguientes teclas:

- Acceso a la programación de la entrada termopar.
- Pasar al Submenú 15 Potenciómetro.
- Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del tipo de entrada termopar, indicación "-tc-".

Pulsar la tecla para seleccionar el tipo de entrada deseada ["**tYPE-J**" = termopar J, "**tYPE-K**" = termopar K, "**tYPE-t**" = tipo T, "**tYPE-r**" = termopar R, "**tYPE-S**" = termopar S, "**tYPE-E**" = termopar E].

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación de las unidades de temperatura, indicación "-tc-".

Pulsar la tecla para seleccionar las unidades deseadas ["**°C**" = Celsius ó "**°F**" = Fahrenheit].

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

BETA-M/M2

Programación de la resolución, indicación "-tc-".

Pulsar la tecla para seleccionar la resolución deseada ["**0.1**°" = resolución en décimas de grado ó "**1**°" = resolución en grados].

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del desplazamiento del display, indicación "oFFSEt".

Presionar sucesivamente la tecla , para incrementar el dígito en intermi-

tencia y la tecla \checkmark , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo]. El valor de offset es programable hasta ±9.9 ° con resolución de décimas, o hasta ±99 ° con resolución de grados. El led "TARE" permanecerá activado siempre que el offset contenido en memoria sea distinto de cero.

ENTER

ESC

Validar la configuración de la entrada termopar y retornar al inicio de la programación "-Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

ESC

CONEXIONADO ENTRADA TERMOPAR

- PIN 6 = No conectado
- PIN 5 = No conectado
- PIN 4 = No conectado
- PIN 3 = Termopar
- PIN 2 = No conectado
- PIN 1 = + Termopar

Esquema de conexión de la señal de entrada para **termopar J, K, T, R, S y E** a dos hilos.

Consultar las recomendaciones de conexionado en la página 7.

PROGRAMACIÓN DE POTENCIÓMETRO

Cuando se configura el instrumento como indicador de desplazamiento no es necesario introducir ningún parámetro. La excitación queda automáticamente seleccionada, pudiendo ser 10V ó 5V, dependiendo de la posición del puente interno de excitación (ver figura en página 11).

Esta tensión se utiliza para excitar el potenciómetro de forma que el nivel de la señal de entrada varíe según la posición del cursor.

Submenú 15 - POTENCIÓMETRO

La figura muestra la indicación "-Pot-" correspondiente a la configuración de la entrada potenciómetro. Pulse una de las siguientes teclas:

ENTER

Validar la configuración de la entrada potenciómetro y salir al inicio de la programación "-Pro-".

ESC

Pasar al Submenú 11 - Proceso

Cancelar la programación y retornar al inicio de la programación "-Pro-".

PIN 6 = - EXC

- PIN 5 = POT HI
- PIN 4 = No conectado
- PIN 3 = POT LO (COMM)
- PIN 2 = POT CENTRAL
- PIN 1 = No conectado

Esquema de conexión de la señal de entrada para **potenciómetro** a tres hilos.

:0

:

15

TARE

- P

02-

Consultar las recomendaciones de conexionado en la página 7.

01

2

3

4

PROGRAMACIÓN DISPLAY

PROGRAMACIÓN DISPLAY

Escala

Sólo es necesario escalar el instrumento cuando está configurado como indicador de proceso, célula de carga o potenciómetro. Escalar consiste en asignar un valor de display a cada valor de la señal de entrada.

En procesos lineales esto se consigue programando dos coordenadas -(entrada1, display1) y (entrada2, display2), entre las cuales se establece una relación lineal donde a cada valor de la señal de entrada le corresponde un valor de display. La relación puede ser directa o inversa.

Para tener mayor precisión en la medida, los puntos 1 y 2 deberían situarse aproximadamente en los dos extremos del proceso.

En procesos no lineales es posible programar hasta 30 puntos entrada-display.

Cada dos puntos están unidos por un tramo recto, y el conjunto es una curva que representa la relación entre valor de entrada y valor de display.

Se obtiene mayor precisión en la medida cuanto mayor es el número de puntos programados y cuanto más próximos estén entre sí.

(inp7, dsp7)
 Los valores de entrada deben programarse en orden siempre creciente o siempre decreciente, evitando asignar dos valores de display diferentes a dos valores de entrada iguales.
 Los valores de display pueden introducirse en cualquier orden e inclu-

Los valores de display pueden introducirse en cualquier orden e incluso asignar valores iguales a diferentes entradas.

Por debajo del primer punto programado, se sigue la relación establecida entre los dos primeros puntos de la escala.

Por encima del último punto programado se sigue la relación establecida entre los dos últimos puntos de la escala. Hay dos métodos para programar la escala, el método **SCAL** (menú 21) y el método **tEACH** (menú 22). En el diagrama se ha desarrollado el menú 21 SCAL como ejemplo, siendo exactamente igual que el menú 22 tEACH.

Método SCAL

Los valores de entrada y de display se programan de forma manual. Este método es adecuado cuando se conoce la señal que entrega el transductor en cada punto del proceso.

Método tEACH

Los valores de entrada se introducen directamente de la señal presente en el conector de entrada en el momento de programar cada punto. Los valores de display se programan de forma manual.

Este método es adecuado cuando es posible llevar el proceso a las condiciones de cada uno de los puntos a programar.

Programación de los puntos de linealización

Los dos primeros puntos entrada-display son accesibles por pulsaciones de la tecla ENTER. Para entrar en la programación del resto de puntos, mantener la tecla ENTER durante aproximadamente 3s desde el valor de display del punto 2. A partir de aquí el avance se realiza por pulsaciones de ENTER. Cuando se haya programado un número de puntos suficiente para definir el proceso, pulsar ENTER durante 3s para salir de la rutina de programación de la escala. El resto de puntos, hasta 30, que no han sido programados se omite del cálculo de display.

Submenú 21 - ESCALA (entradas proceso, célula de carga y potenciómetro)

En este menú se configura la escala mediante la introducción, por teclado, de cinco parámetros conocidos: InP-01, dSP-01, punto decimal, InP-02 y dSP-02. La posición del punto decimal guedara fijada para todas las fases de programación v funcionamiento.

La figura muestra la indicación "-SCAL-" correspondiente al inicio del menú de configuración de la escala. Pulse una de las siguientes teclas:

ENTER Acceso a la programación del valor de la entrada en el Input 1.

 \bigcirc Pasar al Submenú 22 - Teach

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor de la entrada en el punto 1, indicación "InP-01".

Presionar sucesivamente la tecla 🔷 , para incrementar el dígito en intermiten-

cia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER ESC

ESC

ESC

Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 1, indicación "dSP-01".

Presionar sucesivamente la tecla \checkmark , para incrementar el dígito en intermi-

tencia y la tecla , para desplazarse al dígito de la derecha, hasta comple-tar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER Validar los datos y acceder al siguiente paso de programa.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del punto decimal "dECP" El display principal muestra el valor del dSP-01 con el punto decimal en intermitencia. Presionar sucesivamente la tecla \checkmark , para desplazar el punto decimal hasta la posición deseada. Si no se desea punto decimal, desplazar el punto decimal hasta el último dígito de la derecha.

ENTER Validar la posición introducida y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor de la entrada en el punto 2, indicación "InP-02".

Presionar sucesivamente la tecla , para incrementar el dígito en intermitencia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER Validar los datos y acceder al siguiente paso de programa.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 2, indicación "dSP-02".

Presionar sucesivamente la tecla 🍊 , para incrementar el dígito en intermi-

tencia y la tecla , para desplazarse al dígito de la derecha, hasta comple-tar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER Presionar 3 s para entrar en la rutina de linealización por tramos.

ENTER Validar la configuración del display y salir al inicio "-Pro-".

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Presionando entre 3 segundos desde la fase de programación del display 2 se tiene acceso a programar el

punto nº3 de linealización. A partir de aquí se avanza en el modo normal, es decir, pulsando enter momentánea-

mente después de introducir cada uno de los valores. En cualquier fase de la rutina, una pulsación de retorna al punto anterior, desde el punto nº3 se retorna a la fase -Pro-.

Si desea terminar la programación en un punto inferior a 30, presione *urante* 3 segundos una vez programado el display del último punto deseado.

Programación del valor de la entrada en el punto 3, indicación "InP-03".

Presionar sucesivamente la tecla 📥, para incrementar el dígito en intermitencia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER Validar los datos y acceder al siguiente paso de programa.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 3, indicación "dSP-03".

Presionar sucesivamente la tecla \checkmark , para incrementar el dígito en intermitencia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER Si desea validar el dato y pasar al punto siguiente pulse

2. Si desea validar el dato y terminar con 3 puntos, pulse y mantenga entre durante 3 segundos. El instrumento pasa al nivel -Pro-.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Todos los puntos hasta 29 se programan de igual manera.

Una pulsación de enterna desde la fase de programación del display 29 da acceso a programar el punto nº 30 y último disponible de la escala. La tecla retorna al punto anterior.

Si se ha llegado hasta el punto nº 30, la programación se termina pulsando momentáneamente una vez programado el display 30.

Programación del valor de la entrada en el punto 30, indicación "InP-30".

Presionar sucesivamente la tecla 🍊 , para incrementar el dígito en intermiten-

cia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo]. ENTER

Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 30, indicación "dSP-30".

Presionar sucesivamente la tecla 🍊 , para incrementar el dígito en intermitencia

y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positi-vo, "-" = negativo].

ENTER Validar los datos y volver al inicio de la programación -Pro-.

Retornar al punto anterior.

KOSMOS SERIE

ESC

ESC

Submenú 22 - TEACH (Sólo en entradas proceso, célula de carga y potenciómetro)

En este menú se configura la escala mediante la aplicación de dos señales de entrada tCH-01 y tCH-02 y la introducción, por teclado, de sus valores de display correspondientes (dSP-01 y dSP-02) y del punto decimal. La posición del punto decimal guedara fijada para todas las fases de programación y funcionamiento.

La figura muestra la indicación "-tEACH" correspondiente al inicio del menú de configuración de la escala por el método TEACH. Pulse una de las siguientes teclas:

 \bigcirc Pasar al Submenú 23 - Opciones de display.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Introducción del valor real en el punto 1, indicación "tCH-01" El display principal muestra la lectura de la señal presente en el conector de en-

Acceso a la lectura del valor de la entrada en el Teach 1.

tradas. Presionar la tecla para aceptar esta lectura como valor de la en-trada en el punto 1, indicación "tCH-01".

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 1, indicación "dSP-01".

Presionar sucesivamente la tecla
, para incrementar el dígito en intermitencia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER

ESC

ESC

ESC

Validar los datos y acceder al siguiente paso de programa.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del punto decimal "dECP" El display principal muestra el valor del dSP-01 con el punto decimal en intermitencia. Presionar sucesivamente la tecla , para desplazar el punto decimal hasta la posición deseada. Si no se desea punto decimal, desplazar el punto decimal hasta el último dígito de la derecha, como en la figura 42.1.

ENTER Validar la posición introducida y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Introducción del valor real en el punto 2, indicación "tCH-02" El display principal muestra la lectura de la señal presente en el conector de en-

tradas. Presionar la tecla entrada en el punto 2, indicación "tCH-02".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 2, indicación "dSP-02".

Presionar sucesivamente la tecla 🔶 , para incrementar el dígito en intermitencia y la tecla 🔶 , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo]. ENTER Presionar 3 segundos para entrar en la rutina de linealización por tramos.

ENTER Validar la configuración del display y salir al inicio de la programación "-Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

BETA-M/M

Una pulsación de esde la fase de programación del display 29 da acceso a programar el punto nº30 y último

Si se ha llegado hasta el punto nº30, la programación se termina pulsando momentáneamente enter una vez pro-

Presionando entre 3 segundos desde la fase de programación del display 2 se tiene acceso a programar el punto nº3 de linealización. A partir de aquí se avanza en el modo normal, es decir, pulsando enter momentánea-

mente después de introducir cada uno de los valores. En cualquier fase de la rutina, una pulsación de escorra a la punto anterior, desde el punto nº3 se retorna a la fase -Pro-.

Si desea terminar la programación en un punto inferior a 30, presione *urante* 3 segundos una vez programa-

deseados.

ENTER

Introducción del valor real en el punto 30, indicación "tCH-30" El display principal muestra la lectura de la señal presente en el conector de entradas. Presionar la tecla para aceptar esta lectura como valor de la entrada en el punto 2, indicación "tCH-30".

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del display en el punto 30, indicación "dSP-30".

Presionar sucesivamente la tecla , para incrementar el dígito en intermitencia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

ENTER Validar los datos y volver al inicio de la programación -Pro-.

Retornar al punto anterior.

- E	}	B	ß	ß	
22	ð 9	5 P	- 3	8	2 3 4
TARE	RESET L			ATA)	

3

ENTER

ESC

ENTER

do el display del último punto deseado.

Introducción del valor real en el punto 3, indicación "tCH-03"

El display principal muestra la lectura de la señal presente en el conector de en-

tradas. Presionar la tecla entresionar la tecla para aceptar esta lectura como valor de la entra-da en el punto 3, indicación "tCH-03".

Programación del valor del display en el punto 3, indicación "dSP-03". Presionar sucesivamente la tecla 🍊 , para incrementar el dígito en intermitencia y la tecla 🔶, para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo].

1. Si desea validar el dato y pasar a la programación del punto siguiente pulse

Cancelar la programación y retornar al inicio de la programación "-Pro-".

2. Si desea validar el dato y terminar con tres puntos, pulse y mantenga durante 3 segundos. El instrumento pasa al nivel -Pro-.

Todos los puntos hasta 29 se programan de igual manera.

La tecla control de la control

disponible de la escala. La tecla retorna al punto anterior.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Validar los datos y acceder al siguiente paso de programa.

gramado el display 30.

ESC

02 3

Integrador

El instrumento incorpora, un contador de 8 dígitos (ó 7 dígitos con signo negativo) que puede servir para acumular cantidades a modo de totalizador+contador de lotes (función lógica nº 30 en conector posterior) o como integrador de la medida a través del tiempo.

El contador se visualiza en el display secundario.

El integrador se activa seleccionando la opción **-on**en el menú **23 IntEG**. Cuando se habilita, la función 30 no actúa.

(NOTA: No es posible activar el integrador cuando la opción de cálculo automático de volumen está habilitada)

El valor del integrador se muestra en el display secundario de forma permanente permitiendo visualizar simultáneamente la variable instantánea y el total acumulado. Si se desea, el display secundario puede mostrar otra variable o permanecer apagado.

El integrador acumula la lectura del display a través de una base de tiempos de la siguiente forma:

Total(n) = Total(n-1) +

Lectura de Display x Factor de Escala Base de Tiempos

Como ejemplo de utilización supongamos que se desea obtener el consumo diario de fluído que se vierte a razón de 10 litros por minuto. Si la medida instantánea es 10.00 y está expresada en lit/min, debemos escoger la base de tiempos minuto, así tendríamos un valor de 10.00 lit en el totalizador al cabo de un minuto de trabajo, 20.00 lit en dos minutos, 600.00 lit en una hora, etc.

Si quisieramos tener al final del día el consumo total en m^3 , por ejemplo, deberíamos programar un factor de escala = 0.001 (1 lit=0.001 m^3).

Submenú 23 - INTEGRADOR (entradas proceso y potenciómetro)

En este menú se se selecciona la opción integrador y se configuran los parámetros de funcionamiento; base de tiempos, punto decimal, factor de escala y límite de display mínimo acumulable. Este menú sólo aparece en las configuraciones proceso y potenciómetro.

La figura muestra la indicación "-IntEG" correspondiente al inicio del menú de configuración del integrador.

Para acceder a la selección del integrador y programar las opciones.

Para pasar al siguiente submenú.

Para cancelar la programación y volver al inicio de programación "-Pro-".

2	3	-	8 (Ş	6	 2 3 4
Č	5						

En este paso se ofrecen las opciones -on- y -oFF- para habilitar y deshabilitar el

integrador respectivamente. Pulsar la tecla 🕑 para seleccionar la opción deseada.

Si está activada la opción "cálculo de volumen" (submenú 27 -VoL-) no es posible habilitar el integrador.

Validar la selección y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación de la base de tiempos, indicación "tbASE".

Hay cuatro bases de tiempo: -S- segundos, -M- minutos, -H- horas y -d- días.

Presionar sucesivamente la tecla *para desplazarse alrededor de las opcio-*nes hasta que el display presente la opción deseada.

ESC

Validar la selección v acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

El punto decimal del totalizador se programa en el display secundario y pue-de estar situado en cualquiera de sus ocho dígitos. En el display principal aparece la indicación "dP" y en el display secundario el punto decimal se pone en intermi-

tencia. Presionar sucesivamente la tecla , para desplazar el punto decimal hasta la posición deseada. Si no se desea punto decimal, desplazar el punto decimal hasta el último dígito de la derecha.

ENTER Validar la posición introducida y acceder al siguiente paso de programa.

ESC Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del factor de escala, indicación "FACt".

Presionar sucesivamente la tecla \checkmark , para incrementar el dígito en intermi-

tencia y la tecla 🔶 , para desplazarse al dígito de la derecha, hasta completar

el valor deseado. Una vez programado el valor deseado, pulsar en vali-dar el dato, el punto decimal se pone en intermitencia. La posición del decimal del factor es independiente de la del display, así es posible introducir cualquier valor de 0.0001 a 09999.

Cuando el valor del factor de escala es inferior a 1, divide la señal, cuando es igual o superior, multiplica. No es posible programar un factor de 0.

ENTER Validar la configuración y pasar a la siguiente fase programación.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programacion del Display Mínimo.

"Lo-Cut" es el valor de display mínimo por debajo del cual el integrador deja de acumular. Presionar sucesivamente la tecla 🔶 , para incrementar el dígito en intermitencia y la tecla , para desplazarse al dígito de la derecha, hasta completar el valor y el signo deseados. El primer dígito de la izquierda contiene el signo ["0" = positivo, "-" = negativo]. ENTER Validar la configuración y salir al inicio de la programación "-Pro-". ESC Cancelar la programación v retornar al inicio de la programación "-Pro-".

OPCIONES DE DISPLAY

El instrumento ofrece diversos tipos de filtro de la señal que utilizados convenientemente proporcionan una lectura estable, a expensas de un cierto retardo.

El filtro P es un filtro pasabajos que suaviza la respuesta del display a las variaciones de la entrada.

El **filtro E** corta los picos de señal retardando la respuesta del display hasta que se estabiliza dentro de un margen. El **filtro Average** es un promedio de hasta 200 lecturas

El **filtro Round** elimina pequeñas fluctuaciones del display permitiendo seleccionar redondeos de hasta 100 puntos de display.

Existen además diversas opciones de display que facilitan la lectura tales como selección de dos niveles de brillo de los dígitos del display para adaptarlo a entornos de mayor o menor claridad, visualización de la medida con o sin ceros no significativos y tres velocidades de refresco del display.

Existen dos opciones que permiten optimizar la visualización del display, la intensidad luminosa de los segmentos del display, la visualización de ceros no significativos en la lectura y el número de lecturas por segundo.

Submenú 24 - OPCIONES DE DISPLAY

La figura muestra la indicación **"-dSP-"** correspondiente al inicio del menú de configuración de las opciones de display. Pulse una de las siguientes teclas:

Acceso a la programación de la intensidad luminosa.

Pasar al submenú 25 de programación de los filtros.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

La figura muestra la indicación "brIGHt".

Seleccionar el nivel de intensidad luminosa de los segmentos del display mediante la tecla **("-HI-**" = alto, "-LO-" = bajo].

ENTER

Validar el dato y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

La figura muestra la indicación "LFt-0".

DITEL

ESC

ESC

ESC

ESC

ESC

Seleccionar mediante la tecla ["-YES-" = para obtener una lectura con ceros a la izquierda, "-NO-" = para obtener una lectura sin ceros a la izquierda].

Validar las opciones y salir al inicio de la programación "-Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del número de lecturas por segundo, indicación "-rAtE-". Este filtro controla la cadencia de presentación del display y de las salidas relacio-

nadas con este: analógica, BCD y relés. Seleccionar mediante la tecla \checkmark , un nivel de 18, 4 o 1 lecturas por segundo. Los niveles bajos producirán un cierto retardo en la presentación de la lectura. Tenga en cuenta este retardo en la programación de las salidas relacionadas.

Validar las opciones de display y salir al inicio de la programación "-Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Submenú 25 - FILTROS

Cuando la lectura del display fluctúa debido a pequeñas variaciones en el proceso o a ruido en la señal, pueden activarse una serie de filtros para reducir o anular estas fluctuaciones.

El **Filtro-E**, únicamente puede programarse para entradas de proceso, célula de carga o potenciómetro.

La figura muestra la indicación **"-FILt-"** correspondiente al inicio del menú de configuración de los filtros. Pulse una de las siguientes teclas:

Acceso a la programación del Filtro-P.

Pasar al Submenú 26 - Redondeo.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del filtro de ponderación, indicación "FILt-P".

El efecto de aumentar el nivel de filtro se traduce en una respuesta más lenta del display a los cambios de la señal de entrada. El nivel 0 indica que el filtro esta

desactivado. Seleccionar mediante la tecla 🔶 , un nivel de filtro de 0 a 9.

- Si la entrada es de proceso, célula de carga o potenciómetro, valida los datos y accede al filtro-E.
- Si la entrada es de temperatura, valida los datos y accede al filtro Average.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del filtro de estabilización, indicación "FILt-E".

Permite amortiguar la señal de entrada en caso de producirse bruscas variaciones del proceso. El efecto de aumentar el nivel de filtro se traduce en una disminución de la amplitud de la ventana capaz de provocar variaciones proporcionales

en display. Seleccionar mediante la tecla , un nivel de filtro de 0 a 9. El nivel 0 indica que el filtro esta desactivado.

ENTER Validar nivel filtro y salir al inicio de la programación "-Pro-".

² Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor del filtro de promedio, indicación "AVErAG".

Permite estabilizar el display realizando un promedio del numero de lecturas que se programe. Seleccionar mediante la tecla \checkmark , un nivel de filtro de 1 a 200.

(ENTER) Validar nivel filtro y calir al inicio de la programación "-**D**ro-"

Validar nivel filtro y salir al inicio de la programación "-Pro-".

Cancelar la programación y retornar al inicio de la programación "-Pro-".

12

.

25

28

1

2

3

04

E

DITEL

BETA-M/M2

Submenú 26 - REDONDEO (Sólo en entradas proceso, célula de carga y potenciómetro)

Permite seleccionar el número de puntos necesarios para que se produzca una variación en el display.

La figura muestra la indicación **"-round"** correspondiente al inicio del menú de configuración del redondeo. Pulse una de las siguientes teclas:

Pasar al siguiente submenú.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programación del valor de redondeo, indicación "-round".

Seleccionar mediante la tecla = 1 punto, "**005**" = 5 puntos, "**010**" = 10 puntos, "**020**" = 20 puntos, "**050**" = 50 puntos y "**100**" = 100 puntos].

ENTER Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

CALCULO DE VOLUMENES

Visualizar Volumen en Función de la Presión

Existen diversas maneras de calcular el volumen de un líquido dentro de un tanque de forma curvilínea o irregular. Si en la parte inferior del tanque se pone un sensor de presión, escalando convenientemente la entrada tendremos en cada momento la altura del líquido respecto a la base del tanque.

Para visualizar volumen, el instrumento dispone de diversas opciones:

1. Escalar la entrada para indicar directamente volumen utilizando el método teach y linealización por tramos. El método consiste en llenar el depósito con volúmenes conocidos a diferentes alturas, en cada altura hacer un teach de la señal de entrada y programar el valor conocido del volumen como display. Cuantos más puntos se programen más precisa será la medida.

2. Si la forma del depósito es regular y se conoce la relación matemática entre la señal de entrada y el volumen a indicar, sólo es necesario escalar el display teniendo en cuenta la relación presión-volumen. Por ejemplo en un depósito cilíndrico colocado de forma vertical, el volumen es el producto del área de la base por la altura del líquido.

3. Un tercer método para indicar volumen es dejar que el instrumento haga los cálculos automáticamente en función de la señal de entrada. Este método puede utilizarse siempre que la forma del depósito sea una de las cuatro que se representan en la figura de la derecha.

Cálculo Automático de Volumen

El instrumento calcula automáticamente el volumen en depósitos de forma esférica, cilíndrica, combinación de cilindro y esfera, y silo. El usuario sólo tiene que introducir las medidas del depósito que le solicita el programa.

Typ 2 - Cilindro

Typ 1 - Esfera

Typ 3 - Esfera+Cilindro

Ejemplo de Programación para Cálculo de Volumen

Supongamos un tanque de la forma especificada por la figura Typ 3, es decir, un cilindro horizontal con dos semiesferas en ambos extremos. Un sensor de presión colocado en la base del depósito da una señal proporcional a la altura del líquido.

El primer paso es escalar el instrumento para que lea la altura del líquido en metros, que será utilizada para calcular el volumen posteriormente.

La relación entre presión y altura es lineal, por lo tanto es suficiente programar la escala con dos puntos. En la programación de la escala, se hará corresponder dos valores de la señal de entrada con dos alturas en metros. Es importante que el punto decimal seleccionado en el menú de escala marque la posición de unidades de metro, es decir, 1,5m puede programarse como 1.5000, 01.500, 001.50 ó 0001.5.

El siguiente paso es seleccionar la forma del depósito e introducir sus medidas. Esto se realiza en el menú 27 - Vol.

Submenú 27 - CÁLCULO DE VOLUMEN

Este menú aparece exclusivamente en indicadores de proceso y potenciómetro.

No es posible habilitar esta opción si está activado el integrador (menú 23).

Para que el instrumento calcule automáticamente el volumen en función de la presión, es necesario que la forma del depósito disponible sea una de las representadas en las figuras de la página anterior.

La figura muestra la indicación **"-VoL-"** correspondiente al inicio del menú de configuración de la opción de cálculo automático de volumen. Pulse una de las siguientes teclas:

Acceso a la configuración de la opción.

Pasar al Submenú 21 - SCAL.

ESC

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Selección de la forma del depósito : -no- para deshabilitar la opción, -tYP 1para forma esférica, -tYP 2- para forma cilindro horizontal, -tYP 3- para cilindro horizontal con extremos en forma de semiesfera y -tYP 4- para forma de silo con

base tronco-cónica. Pulsar la tecla para seleccionar la forma del depósito (o la opción -no- para deshabilitar esta opción.

ENTER

Validar la selección y avanzar un paso (o volver al nivel "-Pro") Cancelar la programación y retornar al inicio de la programación "-Pro-".

Una vez seleccionada la forma, es necesario introducir las **medidas del depósito** según la forma seleccionada. En la figura se muestra la entrada del diámetro 1.

Pulsar sucesivamente la tecla *para incrementar el dígito en intermitencia y*

la tecla para desplazarse al dígito de la derecha hasta completar el valor deseado en metros (la posición del punto decimal marca la posición de las unidades de metro).

ENTER Validar el dato y pasar a la programación de la longitud.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Si la forma del depósito seleccionada es una **esfera** (tYP 1), **no se programa la longitud**. En este caso ir directamente a la programación del punto decimal.

Para el resto, presionar sucesivamente la tecla 🍊 para incrementar el dígito

en intermitencia y la tecla para desplazarse al dígito de la derecha, hasta completar en display la **longitud** en metros deseada (la posición del punto decimal marca la posición de las unidades de metro).

Validar los datos y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

SILO: Cuando la forma del depósito seleccionada es silo (tYP 4), el siguiente paso de programa es el diámetro 2. Es necesario programar en total **tres diámetros y tres longitudes**. Si el silo tiene una forma compuesta por sólo una ó dos de las partes en que está dividido, la longitud correspondiente a la parte que falta se programa a cero. Una vez completada la programación de las medidas del depósito, pasar a programar el punto decimal del display.

El display principal muestra el punto decimal en intermitencia. Presionar sucesi-

vamente la tecla , para desplazar el punto decimal hasta la posición deseada. Si no se desea punto decimal, desplazar el punto decimal hasta el último dígito de la derecha.

Validar la posición introducida y acceder al siguiente paso de programa.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

ESPAÑOL

BETA-M/M

FUNCIONES POR TECLADO

Mediante el teclado se pueden controlar las siguientes funciones: TARA, RESET, LIMIT y MAX/MIN. A continuación se describe su funcionamiento, exclusivo en el modo "RUN" o modo de trabajo.

Tecla TARE

DITE

Cada vez que se pulsa esta tecla, el valor presente en display queda absorbido como tara . La activación del led "TARE" indica que el instrumento está trabajando con el va-

lor de tara ó offset contenido en memoria. Es posible visualizar el valor de la tara

absorbida o del offset programado mediante la tecla

Para poner a cero la memoria de tara, presionar en primer lugar la tecla (RESET) y manteniéndola, presionar al

mismo tiempo ^{TARE}. Relajar la presión de las teclas en el orden inverso. Si no podemos poner a cero la tara, es porque la tecla está bloqueada, primero debemos desbloquearla y luego borrarla.

Tecla LIMIT

Esta tecla sólo es operativa cuando el instrumento incorpore una opción de salidas de control: 2 relés (ref. 2RE), 4 relés (ref. 4RE), 4 optos NPN (ref. 4OP) o 4 optos PNP (ref. 4OPP).

Presionando sucesivamente la tecla , se visualizan en el display secundario los valores de setpoint programados. El display auxiliar mostrará la indicación L1, L2, L3 o L4 dependiendo del número de setpoints instalados.

Los valores de setpoint aparecen secuencialmente a cada pulsación de la tecla independientemente de si están activados o inhibidos. Una nueva pulsación, a partir de la indicación del último setpoint, apaga el display secundario y el auxiliar.

Durante la presentación de cualquiera de los setpoints, las demás teclas permanecen activas.

Tecla MAX/MIN

Esta tecla reclama los siguientes parámetros a visualizar en el display secundario : la primera pulsación reclama el pico, la segunda pulsación el valle, la terce-ra pulsación, tara u offset. Si el integrador está habilitado, la cuarta pulsación reclama el valor del totalizador y, si no está habilitado pero el instrumento está configurado para célula de carga y se ha programado una de las entradas lógi-cas con la función nº30 (totalizador+batch), la quinta pulsación muestra el nú-mero de operaciones 'batch' (sumas) realizadas. Una nueva pulsación apaga los displays auxiliar y secundario.

El display auxiliar indica cual de la variables está presente en el display secunda-rio : 'HI' = pico, 'Lo' = valle, 'tA' = tara, 'oF' = offset, 'bA' = n^o batch. El valor del totalizador se visualiza utilizando los ocho dígitos inferiores.

El parámetro seleccionado se visualiza permanentemente y se actualiza al ritmo de la variable principal.

Tecla RESET

Presionar hasta que el parámetro deseado aparezca en el display secundario. Este parámetro puede ser pico ('HI'), valle ('Lo'), total ó nº batch (`bA').

Presionar entonces la tecla (RESET) y, manteniéndola, pulsar al mismo tiempo (Relajar la presión de las teclas en el orden inverso.

Si realizamos una tara o un reset de tara, los valores de pico y valle se actualizaran automáticamente.

Tecla ENTER (3s)

Una pulsación prolongada (3s) da acceso a las rutinas de bloqueo de la programación.

Teclas RESET + ENTER (3s)

Una pulsación prolongada de las tecías RESET y ENTER devuelve el instrumento a la programación de fábrica.

El orden de las teclas es: primero pulsar RESET y, manteniéndola, pulsar ENTER hasta que se encienda el LED STORE indicando que la programación de fábrica se ha grabado en memoria.

www.ditel.es

FUNCIONES POR CONECTOR

El conector CN2 consta de 4 entradas optoacopladas gue se activan mediante contactos o niveles lógicos provenientes de una electrónica externa. Por lo tanto, se pueden añadir cuatro funciones más, a las ya existentes por teclado. Cada función esta asociada a un pin (PIN 1, PIN 2, PIN 4 y PIN 5) que se activa aplicando un nivel bajo, en cada uno, respecto al PIN 3 o COMÚN. La asociación se realiza mediante software con un número del 0 al 36 correspondiente a una de las funciones listadas en las siguientes tablas.

Configuración de fábrica

La programación de las funciones del conector CN2 sale de fábrica con las mismas funciones TARA, MAX/ MIN y RESET realizables por teclado y además incorpora la función HOLD.

Cuando se efectúa un HOLD, el valor de display permanece congelado mientras el pin correspondiente este activado. El estado de HOLD, no afecta al funcionamiento interno del instrumento ni a las salidas de setpoint, pero sí a las salidas BCD y analógica.

PIN (INPUT)	Función	Número
PIN 1 (INP-1)	RESET	Función nº 7
PIN 2 (INP-2)	HOLD	Función nº 9
PIN 3	COMUN	
PIN 4 (INP-4)	TARA	Función nº 1
PIN 5 (INP-5)	PICO/VALLE	Función nº 6

Conexión con tensión externa:

]1

12

5

Colocar puente entre J1(2) y J2(5) CAMBIO de LÓGICA CN2 CN2 tipo entrada **PNP** J1 (2-3) y J2 (5-6) **NPN** J1 (1-2) y J2 (4-5)

La electrónica exterior que se aplique a las entradas del conector CN2 debe ser capaz de soportar un potencial de 40 V/ 20 mA en todos los pins respecto al COMUN. Para garantizar la compatibilidad electromagnética deberán tenerse en cuenta las recomendaciones de conexionado de la Pág. 7

TABLA DE FUNCIONES PROGRAMABLES

- <u>Nº</u>: Número para seleccionar la función por software.
- <u>Función</u>: Nombre de la función y del pulsador de la electrónica externa.
- <u>Descripción</u>: Actuación de la función y características.
 - Activación por: - Pulsación: La función se activa aplicando un flanco negativo en el pin respecto al común. - Pulsación mantenida: La función permanece activada mientras el pin se mantenga a nivel bajo respecto a común.
- (*) . Asignando la función número 0 a todos los pines, se recupera la configuración de fabrica.

Del 0 al 9: FUNCIONES DE DISPLAY Y MEMORIA

No	Función	Descripción	Activación por
0	Desactivado	Ninguna	Ninguna
1	TARA (*)	Añade el valor del display a la memoria de tara y pone el display a ce- ro.	Flanco
2	RESET TARA	Añade la memoria de tara al valor de display y borra la memoria de tara.	Flanco
3	PICO	Muestra el valor de pico. Otra pulsación retorna a la lectura.	Flanco
4	VALLE	Muestra el valor de valle. Otra pulsación retorna a la lectura.	Flanco
5	RESET PICO/VALLE	Realiza un reset del pico o del valle, dependiendo de cual se este visua- lizando.	Flanco
6	PICO/VALLE (*)	1 ^a pulsación muestra el pico, 2 ^o pulsación muestra el valle y la 3 ^a pul- sación retorna a la lectura.	Flanco
7	RESET (*)	Combinado con (1) borra la tara. Combinado con (6) borra el pico o el valle.	Pulsación combi- nada con (1) ó (6)
8	HOLD1	Congela el display mientras todas las salidas permanecen activas.	Nivel mantenido
9	HOLD2 (*)	Congela el display y las salidas BCD y analógica.	Nivel mantenido

Del 10 al 12: FUNCIONES ASOCIADAS CON LA VISUALIZACIÓN DE VARIABLES DE MEDIDA

No	Función	Descripción	Activación por
10	INPUT	Muestra el valor real de la señal de entrada, en mV (intermitente).	Nivel mantenido
11	BRUTO	Muestra el valor medido + el valor de tara = valor bruto	Nivel mantenido
12	TARA	Muestra la tara acumulada en memoria.	Nivel mantenido

Del 13 al 16: FUNCIONES ASOCIADAS A LA SALIDA ANALÓGICA

Nº	Función	Descripción	Activación por
13	ANALOGICA BRUTO	Hace que la salida analógica siga al valor bruto (valor medido + tara).	Nivel mantenido
14	ANALÓGICA CERO	Pone la salida analógica en estado cero (0V para 0-10V, 4mA para 4-20mA)	Nivel mantenido
15	ANALÓGICA PICO	Hace que la salida analógica siga el valor de pico.	Nivel mantenido
16	ANALÓGICA VALLE	Hace que la salida analógica siga el valor de valle.	Nivel mantenido

Del 17 al 23: FUNCIONES PARA USO DE UNA IMPRESORA POR SALIDA RS

No	Función	Descripción	Activación por
17	IMPRIMIR NETO	Imprime el valor neto.	Flanco
18	IMPRIMIR BRUTO	Imprime el valor bruto.	Flanco
19	IMPRIMIR TARA	Imprime el valor de tara.	Flanco
20	IMPRIMIR SET1	Imprime el valor del setpoint 1 y su estado.	Flanco
21	IMPRIMIR SET2	Imprime el valor del setpoint 2 y su estado.	Flanco
22	IMPRIMIR SET3	Imprime el valor del setpoint 3 y su estado.	Flanco
23	IMPRIMIR SET4	Imprime el valor del setpoint 4 y su estado.	Flanco

Del 24 al 25: FUNCIONES ASOCIADAS CON LAS SALIDAS DE SETPOINT

No	Función	Descripción	Activación por
24	FALSOS SETPOINTS	De uso exclusivo para instrumentos que no tengan instalada una op- ción de relés u optos. Permite la programación y uso de 4 valores de setpoints.	Nivel mantenido
25	RESET SETPOINTS	De uso exclusivo para instrumentos con 1 ó varios setpoints progra- mados como biestables. Desactiva los setpoints biestables.	Flanco

Del 26 al 36: FUNCIONES ESPECIALES

Nº	Función	Descripción	Activación por
26	ROUND RS	El valor de display se transmite por la RS sin filtros, ni redondeo.	Nivel mantenido
27	ROUND BCD	Hace que la salida BCD siga el valor de display sin redondeo.	Nivel mantenido
28	ENVIO ASCII	Envío de los 4 últimos dígitos del display a un indicador remoto, mo- delo MICRA-S. Manteniendo el pin a nivel bajo, se envía una vez/seg.	Flanco ó Nivel mantenido
29	Inhibir Setpoints	Inhibe la actuación de los setpoints dejando las salidas en estado de reposo.	Nivel mantenido
30	Batch	Sumar lectura actual de display al totalizador e incrementar en uno el contador de lotes.	Flanco
31	Visualización Total	El valor del totalizador aparece en display alternándose la parte alta y la parte baja de cuatro dígitos cada una. En el display auxiliar se muestra la letra "H" o "L" según se está visualizando una u otra	Nivel mantenido
32	Visualización Lotes	El display muestra el valor del contador de lotes. En el display auxiliar se muestra la letra "b".	Nivel mantenido
33	Reset Total y Batch	Poner a cero el totalizador y el contador de lotes	Flanco
35	Imprimir Total y Batch	Impresión del valor del totalizador y del contador de lotes.	Flanco
36	Hold e impresión de pico	En la activación reseta el pico memorizado. Registra el valor máximo de la medida mientras se mantiene activada la función, y en la desac- tivación congela el valor último registrado y lo imprime.	Nivel mantenido

68 LoG InP

in P

.

:0

HOLD

ī

61

PROGRAMACIÓN DE LAS ENTRADAS LÓGICAS

Si ya hemos decidido que funciones vamos a programar para el conector, podemos acceder al modulo 6 de configuración de las entradas lógicas. Este consta de cuatro menús configurables, uno por cada PIN del conector CN2.

Para acceder al menú 60 de configuración de las entradas o funciones

lógicas, presionar para pasar del modo de trabajo al modo de programación y a continuación pulsar la tecla hasta situarse en la indicación

"LoGInP" . Desde este menú, pulsar de nuevo enter , se accede a cuatro sub-

menús, uno por cada Pin del conector CN2, mediante la tecla

. Puede escogerse un número de función entre 0 y 36.

Consultar las tablas , para la descripción y activación de cada una de estas funciones. A continuación, se explica la programación del Pin 1, el resto de pines se configuran de la misma forma.

MENU 61 - Programación del PIN 1

La figura muestra la indicación **(InP-1)** correspondiente al submenú de configuración de la función del Pin 1. Seleccionar el número de función [0-36], consultando la tabla de funciones programables.

- Pasar al submenú 62 de programación del Pin 2.
- Modificar el número de función.
- **ENTER** Validar los datos y retornar al inicio de la programación.
- Cancelar la programación y retornar al inicio de la programación.

BLOQUEO DE LA PROGRAMACIÓN

Diagrama del menú de seguridad

La figura adjunta muestra el menú especial de seguridad. En él se configura el bloqueo de la programación (total o parcial). El acceso a este

menú se realiza a partir del modo de trabajo, pulsando la tecla durante 3 segundos, hasta que aparezca la indicación "CodE".

De fabrica el instrumento se suministra con un código por defecto, el "0000". Una vez introducido este, encontraremos la indicación "CHAnGE" que nos permitirá introducir un código personal, que deberemos de anotar y guardar debidamente (no se fíe de su memoria). A partir de la introducción de un código personal, el código de fabrica queda inutilizado.

Si introducimos un código incorrecto, el instrumento saldrá automáticamente al modo de trabajo.

El bloqueo total de la programación, indicación "tot-LC", se realiza cambiando el valor a "1". Mientras que el bloqueo parcial de la programación, se realiza cambiando el valor a "0". A continuación, irán apareciendo los menús y submenús cuya programación puede ser bloqueada.

La indicación "StorE" señala que las modificaciones efectuadas se han guardado correctamente.

[] []2

3 4

02 (13)

Π4

El instrumento se suministra con la programación desbloqueada, dando acceso a todos los niveles de programación. Una vez completada la programación del instrumento recomendamos tomar las siguientes medidas de seguridad:

Bloquear el acceso a la programación, evitando que puedan efectuarse modificaciones de los parámetros programados.

Bloquear las funciones del teclado que puedan producirse de forma accidental.

Existen dos modalidades de bloqueo: parcial y total. Si los parámetros de programación van a ser reajustados con frecuencia, realice un bloqueo parcial. Si no piensa realizar ajustes, realice un bloqueo total. El bloqueo de las funciones del teclado es siempre posible.

El bloqueo se realiza por software con la previa introducción de un código personalizable. Cambie lo antes posible el código de fabrica, anotando y guardando en un lugar seguro su código personalizado.

BLOQUEO TOTAL

Estando el instrumento totalmente bloqueado, podrá accederse a todos los niveles de programación para comprobar la configuración actual, si bien **no será posible introducir o modificar datos**. En este caso, cuando se entra en programación, aparecerá en el display secundario la indicación "-dAtA-".

BLOQUEO PARCIAL

Estando el instrumento parcialmente bloqueado, podrá accederse a todos los niveles de programación para comprobar la configuración actual, **pudiéndose introducir o modificar datos en aquellos menús o submenús que no estén bloqueados**. En este caso, cuando se entra en los menús de programación, aparecerá en el display secundario la indicación "-Pro-".

Los menús o submenús que pueden ser bloqueados son:

- Programación Setpoint 1 (menú 31).
- Programación Setpoint 2 (menú 32).
- Programación Setpoint 3 (menú 33).
- Programación Setpoint 4 (menú 34).
- Programación (módulo 10).
- Escala (menús 21/22, 23 y 27).
- Opciones de display y filtros (menús 24, 25 y 26).
- Programación salida analógica (módulo 40).
- Configuración salida serie (módulo 50).
- Programación de las entradas lógicas (módulo 60).
- Acceso directo a la programación de los Setpoints.

Además de los menús correspondientes a las opciones que estén instaladas ("SEt1", "SEt2", "SEt3", "SEt4", "AnAout" o "rS CoM").

NUEVAS FUNCIONES DEL MÓDULO RELÉS

Utilizar setpoint 2 para detectar pico

La opción 'MAX' es para detección de pico sin filtrar, la opción 'MAX-F' es para valores de pico filtrados.

En este caso se tienen en cuenta todas las opciones programadas para el setpoint (Latch, HI-LO, RET-HYS, Blink).

El valor a programar en el parámetro valor de setpoint será el valor de display a partir del cual se empieza a evaluar el pico, por debajo de este valor no actúa.

El valor a programar en el parámetro valor retardo / histéresis será el tiempo que permanecerá activado el relé / opto una vez alcanzado el pico (excepto si es latch).

La salida se activa cuando el valor de display deja de aumentar (una vez sobrepasado el valor de setpoint2) durante un número de lecturas programable por el usuario de 0 a 99.

La programación del número de lecturas se presenta a continuación de la programación del modo setpoint2 cuando se ha seleccionado esta opción.

Activar y desactivar setpoint mediante orden por rs232C o rs485

Se programa esta función seleccionando la opción 'CoM' en el nivel de selección de activación del setpoint. El resto de opciones no aparecen en la rutina de programación excepto la intermitencia del display. Una vez activadas las salidas no se desactivan en overflow ni al pasar por programación.

Comparación de los setpoints con el valor del totalizador

En este caso el valor de setpoint se programa en el display secundario. El resto de las opciones son idénticas a las de un setpoint normal.

MODOS DE TARA

Mediante la tecla seleccionamos el modo en que el instrumento tratará el proceso de tarar. Siempre que se acceda a este menú, el valor de tara almacenado en la memoria del instrumento se hará cero, y como siempre que el aparato esté en este estado, el led TARE aparecerá apagado. Una vez seleccionado el modo de funcionamiento, salimos al modo "RUN", desde el que se efectuará el proceso de tarar.

ERFEI En el modo tArE1 el instrumento a una pulsación de la tecla **TARE**, almacena el valor mostrado en el display en ese momento siempre que no se encuentre en sobre-escala, el Led TARE se iluminará, y a partir de ese momento el valor mostrado es el valor neto, el medido menos el valor almacenado. Si teniendo el aparato una tara, se vuelve a producir una pulsación simple de la misma tecla, el valor mostrado en ese momento se añadirá a la tara previamente almacenada, siendo la suma de ambas la tara resultante.

En este modo, la tecla TARE no tiene efecto cuando el instrumento está en RUN. El valor de tara ahora lo introducimos manualmente, siendo sin embargo el funcionamiento del aparato como en el modo anterior. Al menú de edición se accederá desde el modo "RUN", con la pulsación de la tecla ENTER que nos llevará a -Pro- y pulsando la tecla TARE mas de tres segundos nos permitirá mediante las teclas y introducir el valor de tara en memoria y pulsando la tecla ENTER volveremos a RUN quedando el LED TARE encendido, no permitiendo efectuar mas taras desde teclado, debiendo reprogramarla para anularla.
 Editará una variable a la que llamaremos valor neto, accediendo desde "RUN", tras la pulsación durate 3s. de la tecla y siguiendo a su vez, el diagrama (página 18), se programa el valor neto (normalmente indicado en el recipiente) La acción de tarar, como en el primer caso, no tendrá efecto hasta que se produzca la pulsación de la tecla acción de tarar, estando el instrumento en modo "RUN", activándose el led TARE. El valor almacenado en tara ahora es la diferencia entre el valor medido por el aparato cuando se produjo la acción de tarar y el valor neto. Siendo igual que siempre el valor mostrado la diferencia entre el valor medido y el valor de tara. Será necesario entrar en el menú de programación y pasar por "CndSP" > "ModtA" para que la tara sea reseteada, la tecla TARE quedará inactiva hasta que se reprograme nuevamente

Ejemplo:

Un proceso utiliza el líquido contenido en un bidón del que se conoce según las especificaciones del fabricantee el peso bruto, 100 Kg, y 75 Kg. neto. Se utiliza en el proceso de pesaje una célula de carga conectada a un instrumento y se necesita conocer el peso del líquido neto en cada instante del proceso. Seleccionando este modo de tara, se introduciría el valor Neto mediante edición. Cuando el instrumento esté midiendo el pesaje del bidón, ahora totalmente lleno de líquido, que sería 100 Kg, se tara el instrumento, pasando ahora a medir 75 Kg., y midiendo desde este valor a 0 durante el vaciado del mismo.

Programación:

Si se ha seleccionado la entrada Proceso o Potenciómetro, en el menú 20 "CndSP" después el submenú 27 "-VoL-" y

pulsando de nuevo 🔶 accedemos al submenú **ModTA**.

Si se ha seleccionado la entrada Célula de Carga, en el menú 20 "CndSP" después el submenú 26 y pulsando de nuevo

accedemos al submenú ModTA.

Si se ha seleccionado Proceso o Potenciómetro

BETA-M/M2

PROGRAMACIÓN DEL VALOR NETO EN TARE MODE 3

Para editar el valor neto, estando el instrumento en modo RUN, pulsar la tecla para acceder a la indicación -Pro-, entonces pulsar la tecla mas de 3 segundos, el display mostrará el último valor de TARA programado y el dígito rojo de mas a la izquierda parpadeará, con las teclas y programar el valor **NETO**, normalmente indicado en el envase, validar con velve al modo de trabajo, **en este momento y con el envase sobre la plataforma debe pulsarse la tecla** , pasando el instrumento a indicar el peso neto activando el led TARE a partir de este momento la tecla TARE no tiene efecto en la indicación del peso.

SENSOR BREAK

Esta función permite detectar la rotura de cualquier hilo que conecta el sensor "Load Cell" al instrumento. El análisis para detectar hilos rotos se efectúa cada 1,5 segundos y la respuesta de los relés y salida analógica (si se usan) será el mismo que si el instrumento estuviese en situación de sobrescala (**OVFLO**) (mas señal de entrada de la permitida).

NOTAS: Este sistema de detección trabaja solamente si el sensor se alimenta con la excitación del instrumento.

Si se ha programado la entrada "Load Cell", en el menú 20 "CndSP" después el submenú 28 pulsando de nuevo la te-

cla se llega al menú 29 -Sbr- Sensor Break y pulsando la tecla es posible seleccionar –on- para activar la función o –oFF- para desactivarla.

Si se ha seleccionado Célula de Carga

FAIL SAFE

Función que permite detectar el fallo de la alimentación del equipo o del instrumento informando mediante la conexión de la salida de relé programada como tal al sistema de supervisión general, PLC u otros..

Esta función puede ser programada a cualquiera de los relés activos en el submenú 31, 32, 33, 34 después de la programación de los parámetros "**-Hi-Lo-**" mostrará "**-no nc-**" (no=normalmente abierto), (nc=normalmente cerrado

-nc- es el modo FAIL SAFE

r.o.C. Función / (rate of Change) Velocidad de Cambio

La función r.o.C es útil para detectar la velocidad de cambio del valor del display, dependiendo de la polaridad programada en el setpoint detectaremos el incremento o la disminución.

En modo **r.o.C.**, si el valor del setpoint es, por ejemplo = 1000, esto significa que la alarma se activará cuando el display incremente mas de 1000 puntos por segundo.

Si el valor del setpoint fuese, por ejemplo = -1000, la alarma se activaría cuando el valor del display desciende con una velocidad superior a 1000 puntos por segundo.

Las alarmas r.o.C. tienen las mismas opciones de programación que el resto de alarmas, a saber, se puede escoger el modo de acción, HI-LO, NO-NC, Latch, delay-histéresis, LED-LED+blink. La única diferencia es si se selecciona delay, en las alarmas **r.o.C**. no se aplica a la activación y a la desactivación, sino solo a la desactivación. Esta función es aplicable a cada setpoint por separado.

Programación:

Si se ha programado entrada: Proceso, Potenciómetro, Load Cell, en el submenú 31 CoMP después de "-VAL-" pul-

se accede a la función **r.o.C.,** o en el submenú 32 se accede después de MaxF or totAL (si sando la tecla activado).

Si ha sido programada entrada Temp, en el submenú 31, 32, 33, 34 se accede después de -VAL-

Note: La situación ovflo (por rotura del sensor, exceso de señal o incorrecta programación) sitúan a los relés al estado de reposo que corresponda según la programación establecida.

PROCESO, POTENCIÓMETRO Y CÉLULA DE CARGA

	nEt	GroS	PEAK	VAL	MAX(*)	MAXF(*)	totAL(**)	roC
--	-----	------	------	-----	--------	---------	-----------	-----

(*) Solo Setpoint 2

(**) Solo si el totalizador o integrador esta activado

TERMOPAR Y PT100

doSE / DOSIFICACION

Si se ha programado la entrada "Load Cell, Potenciómetro o Proceso", solo en el menú 31 es posible seleccionar la función "doŠE"

MODO DE FUNCIONAMIENTO "doSE"

Cuando la función "doSE" se selecciona en el menú del setpoint 1, no se puede elegir valor de comparación, puesto que estará en el valor neto del display.

Ni se puede elegir HI o LO modo pues dependerá de si el setpoint es positivo (HI) o negativo (LO) y el valor numérico del setpoint tendrá obligatoriamente que programarse a través de la rutina de acceso directo (teclas ENTER y LIMIT). yando se sale del menú 31 con la opción "doSE" seleccionada, el setpoint se bloquea y no funciona. Para iniciar el modo trabajo se ha de entrar obligatoriamente en el acceso directo a setpoits y programar el valor de

dosificación.

Al pulsar ENTER el valor del setpoint es añadido al valor neto interno del display (si es positivo), y es automáticamente modo (HI), o restado (si es negativo), y es automáticamente modo (LO). A partir de este momento queda activada la operación del setpoint 1.

Cada vez que el display incrementa (HI) o decrementa (LO) en un número de puntos igual al programado en el setpoint 1 se activará la salida del relé1.

De la misma forma, si la función lógica nº 30 ha sido programada, el valor del setpoint será añadido al totalizador e incrementado en una unidad el contador de batch.

Si se activa también la función correspondiente pueden visualizarse el total y el batch.

No es posible programar "trAC" si en el menú 31 ha sido programado "doSE

|--|

ESPECIFICACIONES TÉCNICAS

ENTRADA

Configuración	diferencial	asimétrica
Entrada Proceso	Tensión	Corriente
	±10Vdc	±20mAdc
Max. Resolución	0.1mV	1µA
Impedancia de entrada	1MΩ	15Ω
Excitación24V	@30mA, 10/5	V@120mA)
Error máximo	±(0.1% lectu	ra + 3 dig)
Coeficiente de temperatura	10	0ppm / °C

Entrada Célula de Carga

Tensión	±300mVdc
Máx. Resolución	0.15 μV
Impedancia de entrada	100ΜΩ
Excitación	10/5V @ 120mA
Error máximo	$\pm (0.1\% \text{ lectura} + 6 \text{ dig})$
Coeficiente de temperatura	100ppm / °C

Entrada potenciómetro

Tensión	±10Vdc
Impedancia de entrada	10 MΩ
Resolución de display	0.001%
Error máximo	$\pm (0.1\% \text{ lectura} + 3 \text{ dig})$
Coeficiente de temperatura	a 100ppm / °C

Entrada Temperatura

10 °C a +60 °C
.±(0.05 °C/ °C +0.1 °C)
< 1 mA dc
10Ω /cable (balanceado)
a100 ppm/ °C

Entrada	Rango (res. 0.1 °)	Precisión (res. 0.1º)	Rango (res. 1º)	Precisión (res. 1º)
TC N1//	-200.0 a +1100.0 °C	0.4% L ±0.6 °C	-200 a +1100 °C	0.4% L ±1 ° C
	-328.0 a +2012.0 ºF	0.4% L ±1 ºF	-328 a +1472 ºF	0.4% L ±2 ° F
TC "Y"	-200.0 a +1200.0 °C	0.4% L ±0.6 °C	-200 a +1200 ºC	0.4% L ±1 ° C
IC K	-328.0 a +2192.0 ºF	0.4% L ±1 ºF	-328 a +2192 ºF	0.4% L ±2 ° F
TC "T"	-150.0 a +400.0 °C	0.4% L ±0.6 °C	-150 a +400 °C	0.4% L ±1 ° C
	-302.0 a +752.0 ºF	0.4% L ±1 ºF	-302 a +752 ºF	0.4% L ±2 ° F
TC "R"	-50.0 a 1700.0 °C	0.5% L ±2 °C	-50 a 1700 ºC	0.5% L ±4 ° C
	-58.0 a +3092.0 ºF	0.5% L ±4 ºF	-58 a +3092 ºF	0.5% L ±7 ° F
TC	-50,0 a 1700,0 °C	0.5% L ±2 °C	-50 a 1700 °C	0.5% L ±4 º C
	-58.0 a +3092.0 ºF	0.5% L ±4 ºF	-58 a +3092 ºF	0.5% L ±7 º F
TC "E″	-200.0 a 1000.0 °C	0.4% L ±1 °C	-200 a 1000 °C	0.4% L ±2 °C
	-328.0 a +1832.0 ºF	0.4% L ±2 ºF	-328 a +1832 ºF	0.4% L ±4 ºF
Pt100	-100.0 a +800.0 °C	0.2% L ±0.6 °C	-100 a +800 °C	0.2% L ±1 °C
	-148.0 a +1472.0 °F	0.2% L ±1 ºF	-148 a +1472 ºF	0.2% L ±2 ºF

FUSIBLES (DIN 41661) (No suministrados) **BETA-M** (230/115 V AC)F 0.2 A/ 250 V **BETA-M2** (24/48 V AC)F 0.5A/ 250 V

CONVERSIÓN

Técnica	ΣΔ
Resolución	.24 bits
Cadencia	18/ s
Tiempo de calentamiento	10 min.

FILTROS

Frecuencia de corte (- 3 dB)	de 4Hz a 0.05Hz
Pendiente	de 14 a 37dB/10
Filtro E	
Programable	

DISPLAY

Principal99999/+999	99, 6 dígitos rojos 14 mm
Secundario	2+6 digito verdes 8 mm
Punto decimal	programable
LEDs 4 de	e funciones + 4 de salidas
Cadencia de presentación .	55.5 ms/ 250 ms/ 1 s

INDICACIONES ERROR

Sobre escala negativa	<i>- OuFLO</i>
Sobre escala positiva	+ OuFLO
Rotura sensor	

ALIMENTACION

BETA-M	115/ 230 V, (±10%) 50/60 Hz AC
BETA-M2	24/ 48 V , (±10%) 50/60 Hz AC
Consumo	

AMBIENTALES

Indoor use

Temp. de trabajo	10°C a 60°C
Temperatura de almacenamiento	25 °C a +85 °C
Humedad relativa no condensada	<95 % a 40 °C
Altitud	2000 m

DIMENSIONES

Dimensiones	96x48x120 mm
Orificio en panel	92x45 mm
Peso	600 g
Material de la caja	.policarbonato s/UL 94 V-0
Estanqueidad del frontal	IP65

INDEX

Introduction au modèle BETA-M	43
Considérations générales de securité	43
Maintenance/ Garantie / Déclaration de Conformité / Recyclage	44
Options de sortie	45
Dimensions et montage	46
Alimentation et Raccordement	47
Description des fonctions du panneau	48
Instructions de programmation	49
Configuration de l'entrée	50
Programmation de l'entrée Process	51
Raccordement entrée Process	52
Programmation de l'entrée Cellule de Charge	53
Raccordement entrée Cellule de Charge	54
Programmation entrée Pt100	54
Raccordement sonde Pt100	55
Programmation entrée Thermocouple	56
Raccordement entrée Thermocouple	57
Programmation et raccordement du Potentiomètre	58
Programmation de l'affichage	59
Intégrateur	65
Options d'Affichage	67
Calcul de Volume	69
Fonctions par Clavier	72
Fonctions par Entrées Logiques (Connecteur)	73
Bloclage de la Programmation	75
Nouvelles Fonctions du module Relais	77
Modes de TARE	
Fonction "SENSOR BREAK" et "FAIL SAFE"	79
Fonction "R.O.C" et "DOSE"	80
Caracteristiques Techniques	81
ANNEXE 1	
List of Commands (ASCII, ISO1745, MODBUS RTU)	
Adress of the variables in the memory (MODBUS RTU)	

INFORMATIONS GÉNÉRALES

Ce manuel ne constitue pas un contrat ou un engagement de la part de Diseños y Tecnología, S.A. Toutes les informations contenues dans ce document sont susceptibles d'être modifiées sans préavis.

Introduction au modèle BETA-M

Ce modèle BETA-M de la série KOSMOS intègre de nouvelles caractéristiques techniques et fonctionnelles. Nouveaux filtres, verrouillage de la programmation par logiciel, fonctions logiques programmables et accès direct à la programmation des valeurs de consigne.

Le modèle BETA-M de la SÉRIE KOSMOS est un indicateur numérique multifonction qui permet à l'utilisateur de configurer l'étage d'entrée à utiliser avec les types suivants :

- ENTRÉE DE PROCESSUS (V, mA)
 ENTRÉE CELLULE DE CHARGE (mV/V)

ENTREE SONDE Pt100
 ENTREE THERMOCOUPLE (J, K, T, R, S, E)
 ENTREE POTENTIOMETRE

Cette configuration est entièrement réalisée par logiciel, sans qu'il soit nécessaire de changer de carte puisque l'option d'entrée permet la connexion directe de n'importe lequel des transducteurs, émetteurs ou éléments primaires.

Il dispose d'un totalisateur/intégrateur à 8 chiffres qui permet de cumuler des quantités sous forme de totalisateur + compteur de lots ou d'intégrer la mesure à l'aide d'une base de temps pour lire le coût par cycle, par jour, etc.

Les fonctions de l'instrument de base comprennent l'affichage de la variable d'entrée, la lecture et la mémorisation des valeurs maximales et minimales (crête/vallée), la fonction de tare et de réinitialisation, ainsi que quatre entrées logiques avec des fonctions programmables (jusqu'à 36) pour télécommande.

Il permet le blocage partiel ou total des paramètres de programmation au moyen d'un code de sécurité à quatre chiffres ainsi que la possibilité de revenir aux réglages d'usine.

Les instruments du modèle BETA-M peuvent également intégrer diverses options de sorties de contrôle analogiques ou numériques (par relais ou optos) et de communication en format BCD parallèle ou série RS232C ou RS485.

Toutes les sorties sont optoisolées du signal d'entrée et de l'alimentation générale.

L'instrument de base est un ensemble soudé composé de la carte mère, de l'écran, du filtre d'alimentation et de l'option multi-entrées qui sont logés dans leurs connecteurs correspondants.

Considérations générales sur la sécurité

Toutes les indications et instructions d'installation et de manipulation figurant dans ce manuel doivent être prises en compte pour garantir la sécurité des personnes et éviter d'endommager cet équipement ou les équipements qui pourraient y être connectés.

La sécurité de tout système intégré à cet équipement relève de la responsabilité de l'assembleur du système.

Si l'équipement est utilisé d'une manière différente de celle prévue par le fabricant dans ce manuel, la protection fournie par l'équipement peut être compromise.

Identification des symboles

ATTENTION : Possibilité de danger.

Lisez attentivement les instructions correspondantes lorsque ce symbole apparaît afin de connaître la nature du danger potentiel et les actions à entreprendre pour l'éviter.

ATTENTION : Possibilité de choc électrique.

Matériel protégé par une double isolation ou une isolation renforcée

MAINTENANCE

Pour garantir la précision de l'instrument, il est conseillé de vérifier sa conformité conformément aux spécifications techniques contenues dans ce manuel, en effectuant des étalonnages à des périodes régulières qui seront définies en fonction des critères d'utilisation de chaque application.

L'étalonnage ou le réglage de l'instrument doit être effectué par un Laboratoire Accrédité ou directement par le Fabricant.

La réparation de l'équipement doit être effectuée uniquement par le fabricant ou par du personnel autorisé par celui-ci.

Pour nettoyer la face avant de l'appareil, il suffira de passer dessus un chiffon imbibé d'eau savonneuse neutre. **NE PAS UTILISER DE SOLVANTS !**

GARANTIE

Les instruments sont garantis contre tout défaut de fabrication ou de matériaux pour une période de 5 ANS depuis la date d´acquisition.

En cas de constatation d'un quelconque défaut où avarie dans l'utilisation normale de l'instrument pendant la période de garantie, il est recommandé de s'adresser au distributeur auprès de qui il a été acquis et qui donneras les instructions opportunes.

Cette garantie ne pourra être appliquée en cas d'utilisation anormale, raccordement ou manipulations erronés de la part de l'utilisateur.

La validité de cette garantie se limite a la réparation de l'appareil et n'entraîne pas la responsabilité du fabricant quant aux incidentes ou dommages causés par le mauvais fonctionnement de l'instrument.

Déclaration de conformité

Pour obtenir la déclaration de conformité correspondant à ce modèle, veuillez accéder à notre site web **www.ditel.es**, où ce document ainsi que le manuel technique et d'autres informations d'intérêt peuvent être téléchargés librement.

Instructions pour le recyclage

Cet appareil électronique est compris dans le cadre d'application de la directive **2002/96/CE** et comme tel, est dûment marqué avec le symbole qui fait référence à la récolte sélective d'appareils électriques qui indique qu'à la fin de sa vie utile, vous comme utilisateur, ne pouvez vous défaire de lui comme un résidu urbain courant.

Pour protéger l'environnement et en accord avec la législation européenne sur les résidus électriques et électroniques d'appareils mis sur le marché après le 13.08.2005, l'utilisateur peut le restituer, sans aucun coût, au lieu où il a été acquis pour qu'ainsi se procède à son traitement et recyclage contrôlés.

CONTENU DE L'EMBALLAGE

- Quick start de l'afficheur
- L'instrument de mesure numérique BETA-M.
- Accessoires pour montage sur tableau (joint d'étanchéité et clips de fixation).
- Accessoires de raccordement (Borniers débrochables et pinces d'insertion des fils).
- Etiquette de raccordement incorporée à la boite de l'instrument BETA-M.
- 4 Ensembles d'étiquettes avec unités d'ingénierie.

Alimentation

Si l'instrument a été commandé avec alimentation 115/230V AC, il est livré couplé en 230V. Si l'instrument a été commandé avec alimentation 24/48V AC, il est livré couplé en 24V. *Vérifier l'étiquette de raccordement avant de procéder à la mise sous tension de l'appareil.*

Instructions de programmation

L'instrument dispose d'un programme avec 6 branches indépendantes pour configurer l'entrée, l'affichage, les points de consigne, la sortie analogique, la sortie communication et les entrées logiques.

Type d'entrée (pag. 50 à 58)

\Rightarrow Vérifiez la configuration correcte du signal attendu avant de connecter l'entrée.

Blocage de la programmation

L'instrument est livré avec la programmation débloquée, donnant accès à tous les niveaux de programmation.

OPTIONS DE SORTIE

Sur la figure on montre la situation des différentes options de sortie.

Les options **2RE**, **4RE**, **4OP** et **4OPP** sont alternatives et seule une d'elles peut être située dans le connecteur.

Les options **RS2**, **RS4** sont aussi alternatives et seule une d'elles peut être située dans le connecteur.

L'option **BCD** exclut toute autre option de sortie

Jusqu'à 3 options de sortie peuvent être présentes et opérer de façon simultanée :

- ANA (Sortie analogique 4-20mA ou 0-10V)
- RS232C, RS485 (seulement une)
- 2 RELAIS, 4 RELAIS ou 4 OPTOS (seulement une).

Pour plus d'informations sur les caractéristiques, les applications, le montage et la programmation, reportez-vous au manuel spécifique fourni avec chaque option.

DIMENSIONS ET MONTAGE

Pour monter l'instrument en tableau, pratiquer un orifice de 92 x 45 mm, introduire l'instrument équipé de son joint d'étanchéité par l'avant dans cet orifice puis venir placer les clips de fixation dans les rainures de guidage du boîtier arrière selon schéma ci-contre.

Faire avancer ces guides vers l'arrière du tableau de manière à ce qu'ils compressent le joint d'étanchéité et maintiennent l'appareil correctement en place.

Pour démonter, soulever légèrement la languette arrière des clips et retirer chaque clip par l'arrière du boîtier.

Montage sur rail ou contre paroi

Suivre les indications de la feuille de montage jointe avec chaque kit ACK100 ou ACK101.

Nettoyage: Le panneau frontal doit seulement être nettoyé avec un tissus humidifié avec une eau savonneuse neutre. NE PAS UTILISER DE SOLVANTS

ALIMENTATION ET RACCORDEMENT

S'il est nécessaire de modifier l'une des configurations physiques de l'appareil, démontez le boîtier comme indiqué.

115/230 V AC: Les instruments alimentés en 115/230 V AC sont livrés avec un couplage pour utilisation à 230 V AC. Pour changer à 115 V AC, modifier la disposition des ponts comme indiqué sur la table 1. L'étiquette de l'appareil devra être modifiée pour indiquer la nouvelle alimentation.

24/48 V AC: Les instruments alimentés en 24/48 V AC sont livrés avec un couplage pour utilisation à 24 V. Pour changer à 48 V AC, modifier la disposition des ponts comme indiqué sur la table 1. L'étiquette de l'appareil devra être modifiée pour indiquer la nouvelle alimentation.

1	2	3	4	5
-				
				-
-				
				-
	1 - -	1 2 - III - IIII - IIII	1 2 3 - E E E E E E E E E E E E E E E E E E E	1 2 3 4 - ■==== ■=== ■=== - ■==== ■=== ■=== - ■==== ■=== ■=== ■==== ■=== ■=== ■===

Table 1. Position des cavaliers du sélecteur.

Selecteur d'alimentation 115 V AC (BETA-M) 24 V AC (BETA-M2)

RACCORDEMENT ALIMENTATION

INSTALLATION

Pour respecter la recommandation EN61010-1, pour les équipements raccordés en permanence, il est obligatoire d'installer un magnétothermique ou d'isoler l'équipement par un dispositif de protection reconnu et facilement accessible par l'opérateur.

ATTENTION

Pour garantir la compatibilité électromagnétique respecter les recommandations suivantes :

- Les câbles d'alimentation devront être séparés des câbles de signaux et ne seront iamais raccordés à la même entrée.
- Les câbles de signal doivent être blindés et le blindage raccordé à la terre.
- La section des câbles doit être > 0.25 mm².

Pour assurer une sécurité maximale l'installation devra être conforme aux instructions ci-dessus.

CONNECTEURS

Pour effectuer le raccordement, débrocher le connecteur CN1 de l'appareil, dénuder

chaque câble sur 7 à 10 mm. Les introduire un à un dans leur emplacement respectif en y plaçant le levier d'aide à l'insertion et en ouvrant avec celui-ci la pince de rétention du câble comme indiqué ci-contre. Procéder de la même façon pour chaque câble et réembrocher le connecteur sur l'appareil.

Les connecteurs débrochables admettent des câbles de section comprise entre 0.08 mm² y 2.5 mm² (AWG 26 \div 14). Certains points de connexion sont munis d'embouts réducteurs pour pouvoir les

raccorder à des câbles inférieurs à une section 0.5 mm². Pour les câbles de section supérieure à 0.5 mm², retirer ces embouts.

BETA-M/M2

DESCRIPTION DES FONCTIONS EN MODE RUN

INSTRUCCIONES DE PROGRAMACIÓN

Comment entrer dans le mode programmation?

Placer l'instrument sous tension. Il réalisera immédiatement un autotest de L'affIchage, donnera la version de son logiciel et se situera en mode travail (RUN).

Par enter , accéder au mode programmation (indication "-Pro-" sur affichage secondaire).

Comment guitter le mode programmation?

A partir du mode programmation, indication "-Pro-", par esc, on affichera momentanément l'indication "qUIt" à l'af-ficheur secondaire, replacera l'instrument en mode travail. Toute modification réalisée avant l'appui sur cette touche n'aura aucun effet et le programme restera dans son état antérieur.

Comment mémoriser les paramètres programmés?

Si on souhaite mémoriser les changements effectués dans la programmation, on doit retourner au pas d'initialisation

du programme, indication "-Pro-", puis par entre , faire apparaître l'indication "StorE". Pendant une seconde, l'appareil mémorise toutes les données et se replace en mode travail.

Comment interpréter les instructions de programmation? Le logiciel interne permettant de configurer l'appareil contient une série de petits menus organisés hiérarchiquement. Selon la figure jointe, à partir de l'indication "-Pro-", par 🔶 faire défiler successivement ces menus. Les menus 30, 40 et 50 apparaîtront seulement si l'option correspondante (Option seuils, Option sortie analogique, Option série) est

intégrée dans l'instrument. En sélectionnant un menu par entre on ouvre le sous-menu correspondant.

FRANÇAI

CONFIGURATION DE L'ENTRÉE

La fig. ci-dessous représente le menu 10 de configuration des entrées. Chacun des cinq sous-menus, entouré par un cadre en pointillés, correspond à la programmation de l'une des différentes entrées possibles: process, cellule de charge, thermomètre Pt100, thermomètre thermocouple et potentiomètre. Les données solicitées dans chaque cas sont indiquées dans les pages suivantes.

KOSMOS SERIE

BETA-M/M2

PROGRAMMATION DE L'ENTRÉE PROCESS

Pour accéder au menu 10 de configuration de l'entrée, appuyer sur passer du mode travail au mode programmation et ensuite appuyer la touche

jusqu'à situer à l'affichage l'indication "CnFInP"

Programmation entrée process

Comme indicateur process, le BETA-M est destiné à la mesure de tous les types usuels de process avec indication directe en unité d'ingénierie. Les paramètres à configurer comme indicateur de process sont:

Type de l'entrée en volts (tension) ou en milliampères (courant).

Plages de l'entrée en tension ou en courant :

"1V" plage -1V à +1V, "10V" plage -10V à +10V,

"1mA" plage -1mA à +1mA, "20mA" plage -20mA à +20mA,

Excitation.

ESC

ESC

ESC

Les tensions disponibles de l'alimentation pour l'excitation du capteur sont: 24V, 10V ou 5V.

La sélection de l'excitation 10 V peut être changée à 5V par mise en place du pont interne situé sur le côté extérieur de la carte d'entrée

Sous-menu 11 - PROCESS

Les affichages auxiliaire et secondaire, indiquent 11 (Sous menu) et "**-Proc-**" : étape d'initialisation à la configuration des signaux de proocess. Par les touches ci-dessous obtenir la direction souhaitée:

ENTER Accès à la programmation de l'entrée process.

Passer du menu 11 au menu 12 – Cellule de charge (p. 24) et suivants.

Quitter le menu et retourner au pas d'entrée en programmation: "-Pro-".

Choix du type de signal, indication "InPUt".

Par sélectionner le type de signal ["**VoLt**" = tension, "**AMP**" = courant].

ENTER Valider le choix et passer au pas de programme suivant.

Quitter le menu et retourner au pas d'entrée en programmation: "-Pro-".

Choix de la plage capable de recouvrir la plage d'entrée du signal "rAnGE".

Par , sélectionner le plage usuelle entre ["**1-V**" ou "**10-V**" si l'entrée est en tension, "**1mA**" ou "**20mA**" si l'entrée est en courant].

ENTER Valider le choix et passer au pas de programme suivant.

Quitter le menu et retourner au pas d'entrée en programmation: "-Pro-".

Appuyer la touche pour **sélectionner l'excitation** ["**10-V**" ou "**24-V**"]. Si on souhaite utiliser l'excitation 5V, on doit préalablement placer le pont interne et sélectionner l'option 10V.

ENTER Valider la configuration de l'entrée process et revenir au début de la programmation "-Pro-".

Revenir au début de la programmation "-Pro-" sans enregistrer les paramètres programmés.

Pont ON = EXC. 5V Pont OFF = EXC. 10V

RACCORDEMENT ENTRÉE PROCESS

PIN 6 =-EXC [sortie excitation (-)] PIN 5 =+EXC [sortie excitation (+)] [entrée mA (+)] PIN 4 =+IN [entréeV (-) ou mA (-)] PIN 3 =-IN PIN 2 =+IN [entrée V (+)] PIN 1 =N/C [non raccordée]

Consulter les recommandations de raccordement page 58.

Raccordement transducteur (V, mA)

Raccordement transducteur (V, mA)

PROGRAMMATION CELLULE DE CHARGE

Programmation entrée cellule de charge

Consulter la documentation du fabricant des cellules, surtout les spécifications de sensibilité et la tension d'excitation requise pour leur alimentation.

En tant qu'indicateur pour cellule de charge sa fonction sera la mesure de charges (poids, pression, torsion...) exercées sur un dispositif raccordé à divers capteurs type pont comme cellule de charge qui délivrent un signal d'une amplitude de ±300 mV.

Les deux tensions d'excitation disponibles sur l'instrument sont 10 et 5V. La sélection s'effectue par la configuration du pont interne d'excitation. De cette manière, peuvent se raccorder jusqu'à 4 cellules en parallèle avec excitation de 10V et jusqu'à 8 cellules en parallèle avec excitation 5V, sans nécessité d'effectuer une alimentation extérieure (voir Raccordement).

Ejemplo:

Supongamos 4 células con sensibilidad 2mV/V a las que se aplica una excitación de 10V; cada una dará una señal de entrada máxima de 20mV, siendo el total 20mV al estar conectadas en paralelo. Si en el mismo caso la excitación fuese 5V, la máxima señal de entrada sería de 10mV.

La configuración por software requiere como único parámetro necesario el rango de entrada, que deberá ajustarse a la máxima señal de entrada prevista.

Hay cuatro rangos: ± 15 mV, ± 30 mV, ± 60 mV y ± 300 mV.

Exemple:

Supposons 4 cellules avec sensibilité 2mV/V sur lesquelles on applique une excitation de 10V. Chacune délivrera un signal maximal de 20mV lorsqu'elles seront couplées en parallèle. Pour une même configuration mais avec excitation 5V le signal maximal à pleine charge sera de 10mV.

FONCTION BATCH

Fonctionnement par entrée logique

Cette fonction, définie comme fonction logique n°30 page 74, est destinée pour un usage en process de pesage où se requiert une totalisation de la quantité de mesures accumulées.

Un capteur raccordé à l'entrée logique associée à fonction 30, détecte la présence d'une charge et envoie une impulsion qui ordonne à l'appareil de sommer la valeur de l'affichage au totalisateur et incrémenter le compteur du nombre de mesures.

Les valeurs du totalisateur et du compteur de lots sont sauvegardées.

La lecture de ces paramètres se fait sur l'affichage secondaire de manière permanente si on le souhaite.

Sous-meuú 12 - CELLULE DE CHARGE

La fig. avec l'indication "-LoAd-", est le pas de départ de la configuration de la plage usuelle du signal d'entrée pour cellule de charge.

Accès à la programmation de l'entrée cellule de charge.

ESC

Retourne au pas d'entrée en programmation: "-Pro-".

Sélection de la plage du signal d'entrée, indication "rAnGE".

Par pour sélectionner la plage du signal d'entrée souhaitée en mV parmi les quatre proposées: **["300mV**" = de -300mV à +300mV**]**, **["60mV**" = de -60mV à +60mV**]**, **["30mV**" = de -30mV à +30mV**]** ou **["15mV**" = de -15mV à +15mV**]**.

ENTER Valider le choix présent à l'affichage secondaire et passer au pas de programme suivant.

Retourner au pas d'entrée en programmation: "-**Pro-**" sans vallider le choix.

RACCORDEMENT ENTRÉE CELLULE DE CHARGE

- PIN 6 = -EXC [sortie excitation (-)]
- PIN 5 =+EXC [sortie excitation (+)]
- PIN 4 = Non raccordée
- PIN 3 =-mV [entrée mV (-)]
- PIN 2 = Non raccordée
- PIN 1 = +mV [entrée mV (+)]

Raccordement cellule de charge (mV/ V)

Pont d'excitation 5V / 10V

Consulter les recommandations de raccordement page 58.

PROGRAMMATION DE L'ENTRÉE PT100

Programmation entrée thermomètre Pt100

Lorsque l'instrument est configuré comme un thermomètre à sonde Pt100 à trois fils, les plages de température et de résolution disponibles sont:

Entrée	Plage (res. 0.1 °)	Plage (res. 1º)		
D+100	-100.0 à +800.0 °C	-100 à +800 °C		
FLIOU	-148.0 à +1472.0 ºF	-148 àa +1472 ºF		

La programmation permet de sélectionner l'unité de température (Celsius ou Fahrenheit), la résolution (degrés ou dixièmes de degrés) et un décalage d'affichage.

Normalement, il ne sera pas nécessaire de programmer une valeur de décalage, sauf dans le cas où il existe une différence connue entre la température capturée par la sonde et la température réelle.

Cette différence peut être corrigée en introduisant un décalage des points d'affichage de -9,9 à +9,9, avec une résolution de 0,1°, ou de -99 à +99, avec une résolution de 1°.

Exemple:

Dans un processus de contrôle de la température, la sonde Pt100 est située dans une partie du processus où la température est inférieure de 10 degrés à celle du point où le contrôle doit être effectué. En introduisant un déplacement d'affichage de 10 points, avec une résolution de 1 degré, la lecture serait corrigée.

Les paramètres à configurer comme thermomètre Pt100 sont :

Échelle en degrés Celsius « °C » ou Fahrenheit « °F ».

Résolution en dixièmes de degré "0'1º" ou en degrés "1º".

La valeur de décalage est programmable jusqu'à ±9,9° avec une résolution en dixièmes, ou jusqu'à ±99° avec une résolution en degrés.

En entrant ces paramètres de configuration de l'entrée Pt100, la linéarisation et l'échelle de l'affichage sont automatiquement ajustées. FRANCAI

www.ditel.es

Þ

188

100

 $\overline{\mathbb{O}^2}$

3

[]4]

Sous-menu 13 - THERMOMÈTRE Pt100

DITEL

Valide la programmation de la Pt100 et retourne au pas d'entrée en programmation: "-Pro-".

ESC Retourne au pas d'entrée en programmation: "-Pro-"sans valider la sélection.

4 2 3

ρ

Ł

- **P**E

Résolution 0,1°: ...Offset ±9,9° Résolution 1°:Offset ±99°

RACCORDEMENT ENTRÉE PT100

PIN 6 = Non raccordé

- PIN 5 = Commun Pt100
- PIN 4 = Non raccordé
- PIN 3 = Pt100
- PIN 2 = Non raccordé
- PIN 1 = Pt100

KOSMOS SERIE

Schéma de raccordement du signal d'entrée du Thermomètre Pt100 à trois fils.

Consulter les recommandations de raccordement pag. 47.

Programmation entrée THERMOCOUPLE

Lorsque l'instrument est configuré en tant que thermomètre à thermocouple, les plages de température et de résolution disponibles sont :

Entrée	Plage(res. 0,1 °)	Plage (res. 1°)		
TC "J″	-200,0 à +1100,0 °C	-200 à +1100 °C		
	-328,0 à +2012,0 ºF	-328 à +2012 ºF		
TC "Y"	-200,0 à +1200,0 °C	-200 à +1200 °C		
	-328,0 à +2192,0 ºF	-328 à +2192 ºF		
тс "т"	-150,0 à +400,0 °C	-150 à +400 °C		
	-238,0 à +752,0 ºF	-238 à +752 ºF		
TC \\D/	-50,0 à +1750,0 °C	-50 à +1750 °C		
IC K	-58,0 à +3182,0 ºF	-58 à +3182 ºF		
TC "S"	-50,0 à +1750,0 °C	-50 à +1750 °C		
	-58,0 à +3182,0 °F	-58 à +3182 ºF		
TC "F"	-200,0 à +1000,0 °C	-200 à +1000 °C		
	-328,0 à +1832,0 ºF	-328 à +1832 ºF		

La programmation permet de sélectionner le type de thermocouple, l'échelle de température (Celsius ou Fahrenheit), la résolution (degrés ou dixièmes de degrés) et un décalage d'affichage.

Normalement, il ne sera pas nécessaire de programmer une valeur de décalage, sauf dans le cas où il existe une différence connue entre la température captée par la sonde et la température réelle.

Cette différence peut être corrigée en introduisant un décalage des points d'affichage de -9,9 à +9,9, avec une résolution de $0,1^{\circ}$, ou de -99 à +99, avec une résolution de 1°.

Exemple:

Un processus de contrôle de la température a la sonde thermocouple située dans une partie du processus où il y a 5 degrés de plus de température qu'au point où le contrôle doit être effectué.

En introduisant un déplacement d'affichage de -5 points, avec une résolution de 1 degré, la lecture serait corrigée.

Les paramètres à configurer sont :

- Type d'entrée thermocouple [J, K, T, R, S, E].
- Échelle en degrés Celsius "°C" ou Fahrenheit "°F".
- Résolution en dixièmes "0.1°" ou en degrés "1°".
- Compenser. La valeur de décalage est programmable jusqu'à ±9,9° avec une résolution de dixièmes, ou jusqu'à ±99° en degrés.

En entrant ces paramètres de configuration, la linéarisation et l'échelle de l'affichage sont automatiquement ajustées.

Sous-menu 14 - THERMOMÈTRE THERMOCOUPLE

La figure montre l'indication "-tc-" correspondant au démarrage du menu de configuration de l'entrée thermocouple. Appuyez sur l'une des touches suivantes :

ENTER Accès à la programmation des entrées thermocouple.

Allez au sous-menu 15 - Potentiomètre.

Annuler la programmation et revenir au début de la programmation "-Pro-".

Effectuer le choix du thermocouple désiré parmi ceux proposés sous indication "-tc-".

Par appuis successif sur , se placer sur le thermocouple souhaité ["**tYPE-J**" = J, "**tYPE-K**" = K, "**tYPE-t**" = T, "**tYPE-r**" = R, "**tYPE-S**" = S, "**tYPE-E**" = E].

Valide le choix du thermocouple présent à l'affichage secondaire et passe au pas de programme suivant.

Retourne au pas d'entrée en programmation: "-Pro-" sans valider le choix.

Choix de l'unité de température, indication "-tc-".

Par appuis successifs sur **•** faire apparaître l'unité souhaitée entre les deux proposées ["**•C**" = Celsius ou "**•F**" = Fahrenheit].

Valide le choix de l'unité présente à l'affichage secondaire et passe au pas suivant.

Retourne au pas d'entrée en programmation: "-**Pro-**" sans valider le choix.

0	Øſ	0	1
; 4	- 2 0	-	3 4

ESC

ESC

Łε

Ø

[] []2

3

4

Choix de la résolution, indication "-tc-".

Par appuis successifs sur = résolution en dixièmes de degrés ou "**1**^o" = résolution en degrés].

ENTER Valide le choix effectué et passe au pas de programmation suivant.

Retourne au pas d'entrée en programmation: "-**Pro-**" sans valider le choix.

Programmation du décalage de l'affichage, indication "oFFSEt".

Par , incrémenter le digit clignotant de 0 à 9 et par , déplacer le digit clignotant vers la droite pour pouvoir le modifier, jusqu'à obtention de la valeur de décalage souhaitée et de son signe. Le premier digit de gauche représente le signe ["0" = positif, "-" = négatif]. Un offset différent de zéro provoque l'éclairage permanent de la led "TARE".

Valide la configuration de l'entrée pour thermocouple et retourne au pas d'entrée en programmation: "**-Pro-**".

Retourne au pas d'entrée en programmation: "-Pro-" sans valider la programmation.

Résolution 0,1°: ... Offset ±9,9° Résolution 1°: Offset ±99°

RACCORDEMENT ENTRÉE THERMOCOUPLE

- PIN 6 = Non raccordé
- PIN 5 = Non raccordé
- PIN 4 = Non raccordé
- PIN 3 = Thermocouple
- PIN 2 = Non raccordé
- PIN 1 = + Thermocouple

Schéma de raccordement pour entrée **thermocouples J, K, T, R, S ou E** à deux fils.

Ē

14

TARE

Consulter les recommandations de raccordement pag. 47.

PROGRAMMATION ENTRÉE POTENTIOMÈTRE

En utilisation de Beta-M comme contrôleur de déplacement potentiométrique, il n'y a aucune programmation à effectuer. L'excitation reste sélectionnée et peut être 10 ou 5V, selon la position du pont sur la carte d'entrée. Cette tension est utilisée pour alimenter le potentiomètre et fournir à l'entrée la tension résultante de la position de son curseur.

Sous-menú 15 - POTENTIOMÈTRE

La figure avec indication "-Pot-" correspond à l'accès au menu de l'indicateur de déplacement potentiométrique. L'appui sur les touches suivantes:

ENTER

ESC

Confirme la sélection de l'entrée potentiomètre et retourne au début de la programmation "-Pro-".

Passe au Sous-menu 11 - Process.

Revient au début de la programmation "Pro-"sans valider le choix effectué.

RACCORDEMENT DU POTENTIOMÈTRE

PIN 6 = - EXC

- PIN 5 = POT HI
- PIN 4 = Non raccordé
- PIN 3 = POT LO (COMM)
- PIN 2 = POT CENTRAL
- PIN 1 = Non raccordé

Schéma de raccordement de l'entrée avec **Potentiomètre** à trois fils.

Consulter les recommandations de raccordement pag. 47.

PROGRAMMATION DE L'AFFICHAGE

PROGRAMMATION DE L'AFFICHAGE

Échelle

Il n'est nécessaire de mettre l'instrument à l'échelle que lorsqu'il est configuré comme indicateur de process, cellule de charge ou potentiomètre. La mise à l'échelle consiste à affecter une valeur d'affichage à chague valeur du signal d'entrée.

Dans les process linéaires, ceci est réalisé en programmant deux coordonnées -(input1, display1) et (input2, display2), entre lesquelles une relation linéaire est établie où chaque valeur du signal d'entrée correspond à une valeur d'affichage. La relation peut être directe ou inverse.

Pour avoir une plus grande précision dans la mesure, les points 1 et 2 doivent être situés approximativement aux deux extrémités du Process.

Dans les process non linéaires, il est possible de programmer jusqu'à 30 points d'affichage d'entrée. Chaque deux points sont reliés par une section droite, et l'ensemble est une courbe qui représente la relation entre la valeur d'entrée et la valeur d'affichage. Plus le nombre de points programmés est grand et plus ils sont pro-

Les valeurs d'entrée doivent être programmées dans un ordre (inp7, dsp7) toujours croissant ou toujours décroissant, en évitant d'attribuer deux valeurs d'affichage différentes à deux valeurs d'entrée égales.

Les valeurs d'affichage peuvent être saisies dans n'importe quel ordre et même attribuer des valeurs égales à différentes entrées. En dessous du premier point programmé, la relation établie entre les

deux premiers points de l'échelle est suivie. Au-dessus du dernier point programmé, la relation établie entre les deux derniers points de l'échelle est suivie.

Il existe deux méthodes pour programmer l'échelle, la méthode SCAL (menu 21) et la méthode tEACH (menu 22). Dans le schéma, le menu 21 SCAL a été développé à titre d'exemple, étant exactement le même que le menu 22 tEACH.

Méthode SCAL

Les valeurs d'entrée et affichage se programment par composition au clavier des valeurs de l'entrée et de la mesure correspondante pour les points extrêmes de la plage.

Méthode tEACH

Les valeurs d'entrée sont introduites par la mesure automatique du signal présent appliqué à l'entrée au moment de saisir ce paramètre. La valeur d'affichage de la mesure correspondante se compose au clavier. Cette méthode est idéale lorsque l'on a la possibilité de simuler le process tel qu'il se déroule en réalité.

Programmation des points de linéarisation

Les deux premiers points d'affichage des entrées sont accessibles en appuyant sur la touche ENTER. Pour entrer dans la programmation du reste des points, maintenez enfoncée la touche ENTER pendant environ 3 s à partir de la valeur d'affichage du point 2.

A partir de là, l'avance se fait en appuyant sur EN-TER. Lorsqu'un nombre suffisant de points a été programmé pour définir le processus, appuyez sur EN-TER pendant 3 s pour guitter la routine de programmation de l'échelle. Le reste des points, jusqu'à 30, qui n'ont pas été programmés sont omis du calcul de l'affichage.

Sous-menu 21 - ÉCHELLE (entrées process, cellule de charge et potentiomètre)

Ici, sont repris, pas par pas, les instructions pour configurer les cing paramètres prévus par la méthode SCAL : InP-01, dSP-01, Position figée du point décimal, InP-02 et dSP-02.

L'affichage "-SCAL-" dispose des indications du pas d'accès au menu de configura-tion d'échelle, méthode SCAL. On peut ainsi obtenir, selon la touche utilisée:

ENTER Accède à la programmation de la valeur du signal d'entrée du point 1.

ESC

Passe au sous menu 22 - Teach. ESC

Retourne au début de la programmation "-Pro-" sans mémoriser les nouvelles données.

Composition de la valeur du signal d'entrée pour le point 1, indication "InP-01".

Par appuis successifs sur 📥 , incrémenter le digit clignotant de (0à9) et par , se déplacer au digit suivant vers la droite. La valeur devra être composée avec son signe situé au premier digit à gauche ["0" = positif, "-" = négatif].

ENTER Valide la valeur de "InP-01" et passe au pas de programme suivant

ESC Retourne au début de la programmation "-Pro-" sans validation de la valeur composée.

Composition de la valeur de l'affichage pour le point 1, indication "dSP-01".

Par appuis successifs sur \checkmark , incrémenter le digit clignotant de (0à9) et par , se déplacer au digit suivant vers la droite. La valeur devra être composée avec son signe qui figurera dans le premier digit à gauche ["0" = positif, "-" = négatif].

ENTER Valide la valeur de "dSP-01" et passe au pas de programme suivant

ESC Retourne au début de la programmation "-Pro-" sans validation de la valeur composée.

Programmation du point décimal « dECP » L'affichage principal indique la valeur de dSP-01 avec le point décimal clignotant. Par appuis successifs sur \checkmark , déplacer celui-ci à la position voulue. S'il n'y a pas de point décimal, le placer au dernier digit, à droite comme sur la figure sur le côté.

ENTER Valide la position choisie et passe au pas de programmation suivant.

Retourne au début de la programmation "-Pro-" sans validation du choix.

Programmation de la valeur de l'entrée au point 2, indication "InP-02". Composition de la valeur du signal d'entrée pour le point 2, indication "InP-02".

Par appuis successifs sur \checkmark , incrémenter le digit clignotant de (0 à 9) et par >>>, se déplacer au digit suivant vers la droite. La valeur devra être composée avec son signe (!) au premier digit à gauche ["0" = positif, "-" = négatif].

ENTER Valide la valeur de "InP-02" et passe au pas de programme suivant

ESC Retourne au début de la programmation "-Pro-" sans validation de la valeur composée.

Programmation de la valeur d'affichage au point 2, indication "dSP-02". Composition de la valeur de l'affichage pour le point 2, indication "dSP-02".

Par appuis successifs sur 📥 , incrémenter le digit clignotant de (0 à 9) et par

, se déplacer au digit suivant vers la droite. La valeur devra être composée avec son signe au premier digit à gauche ["0" = positif, "-" = négatif].

ENTER Valide la valeur de "dSP-02" et passe au pas de programme suivant

ESC Retourne au début de la programmation "-Pro-" sans validation de la valeur composée.

BETA-M/M2

A partir de la fin de programmation de l'affichage du point 2 et par appui (3s minimum) sur en on accède à la programmation du point 3 permettant la linéarisation de l'échelle jusqu'à 30 segments. La suite se fait en mode normal en

avançant par enter pour mémoriser une nouvelle donnée et passer au pas suivant.

Au delà du point 3, pour revenir en arrière au point précédent, utiliser la touche .

Si la programmation n'utilise pas la totalité des 30 points offerts, par utilise durant 3 secondes abréger la programmation à partir de celle du dernier point désiré.

Programmation de la valeur de l'entrée au point 3, indication "InP-03".

Appuyer successivement la touche , pour incrémenter le digit clignotant et la touche , pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de la gauche contient le signe ["0" = positif, "-" = négatif].

ENTER Valider les données et accéder au pas de programme suivant.

Revenir au début de la programmation "-Pro-" sans mémoriser les données.

Programmation de la valeur d'affichage au point 3, indication "dSP-03".

Appuyer successivement la touche pour incrémenter le digit clignotant et la touche pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de gauche représente le signe ["0" = positif, "-" = négatif].

1. Si on appuie sur (I), on passe à la programmation du point suivant.

2. Si on appuie 3s minimum sur entermine la programmation du point 3 qui sera le dernier point de l'échelle. L'instrument revient au niveau -Pro-.

Revenir au début de la programmation "-Pro-" sans valider la donnée.

Tout les points jusqu'à 29 se programment de la même façon.

Un appui sur la touche esc ne renvoie plus au niveau -Pro- mais à la programmation du point antérieur.

Une impulsion sur en fin de programmation de l'affichage 29 fait accéder à la programmation du point 30,

le dernier offert par l'instrument pour terminer l'échelle. La touche renvoie au point antérieur

Si on est arrivé jusqu'au point nº30, la programmation se termine par une impulsion sur (ENTER) une fois programmé l'affichage du point 30.

Programmation de la valeur de l'entrée au point 30, indication "InP-30".

Appuyer successivement la touche 🔺 , pour incrémenter le digit clignotant et la

touche , pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de la gauche contient le signe ["0" = positif, "-" = négatif].

Valider les données at accéder pas de programme suivant.

Revenir au début de la programmation "-Pro-" sans enregistrer la donnée.

Programmation de la valeur d'affichage du point 30, indication "dSP-30".

Appuyer successivement la touche 🔶 pour incrémenter le digit clignotant et la

touche , pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de la gauche contient le signe ["0" = positif, "-" = négatif].

ENTER Valider les données et retourner au début de la programmation -Pro-.

Revenir au point antérieur.

ENTER

ESC

ESC

Sous-menu 22 - TEACH (Seulement en entrées process, cellule de charge y potentiomètre)

Dans ce menu se configure l'échelle en réalisant l'acquisition de la valeur des signaux de l'entrée par la mesure du signal qui y est appliqué tCH-01 et tCH-02 puis par la composition au clavier des valeurs correspondantes de l'affi-chage (dSP-01 et dSP-02) et par la définition du point décimal qui restera figée pour toutes les autres phases de programmation et du fonctionnement.

La figure montre l'indication "-tEACH" correspondant au démarrage du menu de configuration de la balance par la méthode TEACH. Appuyez sur l'une des touches suivantes :

Accès à la saisie autiomatique de la valeur de l'entrée en Teach 1. \frown

Passer au Sous-menu 23 - Options de affichage (page 49).

ESC Revenir au début de la programmation "-Pro-" sans valider de donnée.

Saisie de la valeur réelle au point 1, affichage « tCH-01 »

L'affichage principal indique la valeur du signal présent aux bornes d'entrée.

Appuyer la touche pour accepter cette lecture comme valeur de l'entrée du point 1, indication "tCH-01".

ESC Revenir au début de la programmation "-Pro-" sans enregistrer la donnée.

Programmation de la valeur d'affichage au point 1, indication "dSP-01".

Appuyer successivement la touche , pour incrémenter le digit cliqnotant et la touche , pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de la gauche contient le signe ["0" = positif, "-" = négatif].

ENTER Valider les données et accéder pas de programme suivant.

ESC Revenir au début de la programmation "-Pro-" sans enregistrer la donnée.

Programmation du point décimal « dECP »

L'affichage principal indique la valeur de dSP-01 avec le point décimal clignotant. Par appuis successifs sur , déplacer celui-ci à la position voulue. S'il n'y a pas de point décimal, le placer au dernier digit, à droite comme sur la figure sur le côté.

ENTER

Valide la position choisie et passe au pas de programmation suivant. ESC

Retourne au début de la programmation "-Pro-" sans validation du choix.

Saisie de la valeur réelle au point 2, indication « tCH-02 »

L'affichage principal indique la lecture du signal présent sur l'entrée Input 2.

Par la touche entre , accepter cette lecture comme valeur d'entrée du point 2 (indication "tCH-02").

ESC Revenir au début de la programmation "-Pro-" sans enregistrer la donnée.

Programmation de valeur d'affichage du point 2, indication "dSP-02".

Appuyer successivement la touche 🔷 pour incrémenter le digit clignotant et la touche 💌 pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de la gauche contient le signe ["0" = positif, "-" = négatif].

ENTER Appuyer 3 secondes pour entrer dans la routine de linéarisation par trames.

ENTER Revenir au début de la programmation "-Pro-" en validant les données.

ESC Revenir au début de la programmation "-Pro-" sans valider les données.

BETA-M/M2

Par pendant 3 secondes à partir de la phase de programmation de l'affichage 2 on accède au programme du point n°3 de linéarisation. A partir de là, on avance en mode habituel, c'est à dire que par , on valide l'introduc-

tion de chacune des données. Une impulsion sur dans le cours d'un pas de programme retourne au point antérieur, mais depuis le point n°3 on retourne à la phase -Pro-.

Si la programmation n'utilise pas la totalité des 30 points offerts, par *entre* durant 3 secondes, abréger la programmation à partir de celle du dernier point désiré.

Saisie de la valeur réelle au point 3, indication « tCH-03 » L'affichage principal indigue la lecture du signal présent à l'entrée. Appuyer

la touche entree pour accepter cette valeur comme valeur de l'entrée au point 2, indication "tCH-02".

ENTER Valider les données et accéder au pas de programme suivant.

Revenir au début de la programmation "-Pro-" sans enregistrer la donnée.

Programmation de la valeur d'affichage au point 3, indication "dSP-03".

Appuyer successivement la touche 🔷 pour incrémenter le digit clignotant et la

touche pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de gauche contient le signe ["0" = positif, "-" = négatif].

1. Si on désire valider la donnée et passer à la programmation du point suivant donner une impulsion sur ENTER

2. Si on désire valider la donnée et terminer la programmation avec 3 points, main-

tenir pendant 3 secondes. L'instrument revient au niveau -Pro- après avoir enregistré la donnée.

Tous les points jusqu'à 29 se programment de même façon, sauf que la touche -Pro- mais au début de la programmation du point antérieur.

Une impulsion sur entres après la phase de programmation de l'affichage 29 fait accéder à la programmation du

point nº30 (dernier point possible pour l'échelle). La touche renvoie au point antérieur.

Si on est arrivé jusqu'au point nº30, la programmation se termine par appui sur entres après programmation de l'affichage 30.

Saisie de la valeur réelle au point 30, affichage « tCH-30 » L'affichage principal indique la lecture du signal présent sur l'entrée. Appuyer la

touche entree pour accepter cette lecture comme valeur de l'entrée au point 30 indication "tCH-30".

ENTER Valider les données et accéder au pas de programme suivant.

Revenir au début de la programmation "-Pro-" sans enregister la donnée.

Programmation de la valeur d'affichage du point 30, indication "dSP-30".

Appuyer successivement la touche , pour incrémenter le digit clignotant et la touche , pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirée. Le premier digit de gauche contient le signe ["0" = positif, "-" = négatif].

ENTER Valider les données et retourner au début de la programmation -Pro-.

Revenir au point antérieur.

ESC

ESC

Intégrateur

EL'instrument contient un compteur de 8 digits (ou 7 digits avec signe négatif) qui est utilisé pour accumuler les quantités en mode totalisateur + compteur du nombre de lots (fonction n° 30 associée à une entrée du connecteur CN2 postérieur) ou comme intégrateur de la mesure dans le temps.

Le compteur se visualise sur l'affichage secondaire.

L'intégrateur s'active par sélection de l'option **-on**au menu **23 IntEG** sauf quand la fonction 30 agit.

(NOTE: Il n'est pas possible d'utiliser l'intégrateur quand l'option de calcul automatique du volume est habilité.

La valeur de l'intégrateur est indiquée à l'affichage secondaire sous forme permanente et permet la lecture simultanée de la variable instantanée et du total accumulé. Si on le désire, l'affichage secondaire peut indiquer d'autres variables ou rester éteint.

L'intégrateur accumule la lecture de l'affichage à travers une base de temps de la forme suivante:

Total(n) = Total(n-1) + Lecture Affichage x Facteur d'Échelle Base de Temps

En exemple d'utilisation, supposons que l'on souhaite obtenir une consommation journalière d'un débit de 10 litres par minute. Si la mesure instantanée est 10.00 et est exprimée en lit/min, on doit choisir la base de temps minute. Ainsi nous devrions avoir un affichage de 10.00 lit sur le totalisateur au bout d'une minute de travail, 20.00 litres en 2 minutes et 600,00 litres en une heure, etc.

Si on souhaite avoir en fin de la journée la consommation totale en m^3 on devra programmer un facteur d'échelle = 0,001 (1l=0,001 m^3).

Submenú 23 - INTÉGRATEUR (entrées process et potentiomètre)

Avec ce menu on sélectionne l'option intégrateur on configure ses paramètres de fonctionnement : base de temps, point décimal, facteur d'échelle et limite de l'affichage minimal accumulable.

Ce menu est seulement disponible dans les configurations process et potentiomètre.

La figure indique **"-IntEG"** correspondant au début du menu de configuration de l'intégrateur. Utiliser les touches suivantes:

Pour accéder à la sélection de l'intégrateur et à la programmation des options.

Pour passer au sous-menu suivant.

Pour revenir au début de la programmation "-Pro-" sans enregistrer de donnée.

BETA-M/M2

Dans ce pas sont proposées les options -on- et -oFF- pour habiliter ou inhiber l'inté-

grateur. Appuyer la touche pour sélectionner l'option désirée. Si l'option "calcul de volume" est active, il n'est pas possible d'habiliter l'intégrateur.

Revenir au début de la programmation "-Pro-" sans enregistrer de donnée.

Programmation de la base de temps, indication "tbASE".

Il y a 4 bases de temps: **-S**- seconde, **-M**- minute, **-H**- heure et **-d**- jour.

Appuyer successivement la touche pour se déplacer jusqu'à la base de temps convenable.

ENTER Valider la sélection et accéder au pas de programme suivant.

Revenir au début de la programmation "-Pro-" sans enregistrer de donnée.

Le point décimal du totalisateur se programme sur l'affichage secondaire et peut être placé à l'un quelconque des huit digits. Sur l'affichage principal apparaît l'indication "dP" et l'affichage secondaire un nombre quelconque avec le point déci-

mal clignotant. Appuyer successivement la touche , pour le déplacer jusqu'à la position désirée. Si le point décimal est inutilisé, le déplacer au dernier digit, à droite.

Valider la position sélectionnée et accéder pas de programme suivant.

Revenir au début de la programmation "-Pro-" sans valider de donnée.

Programmation du facteur d'échelle, indication "FACt".

Appuyer successivement la touche 🔷 pour incrémenter le digit clignotant et la

touche 🔶 pour se déplacer au digit de droite, jusqu'à compléter la valeur

désirée. Ensuite, par valider la donnée. Son point décimal se met alors en mode clignotant. La position du point décimal du facteur est indépendent de l'affichage, ainsi il est posible d'introduire une valeur valeur de 0.0001 à 09999. Quand la valeur du facteur d'échelle est inférieure à 1 on divise le signal, quand il est égal ou supérieur, on le multiplie. Il n'est pas possible de programmer un facteur égal à zéro.

ENTER Valider la configuration et passer à la phase de programmation suivante.

Revenir au début de la programmation "-Pro-" sans valider les données.

Programmation de l'affichage minimum.

"Lo-Cut" est la valeur de l'affichage minimal au dessous duquel l'intégrateur commence à accumuler.

Appuyer successivement la touche 🔎 pour incrémenter le digit clignotant et sur

la touche , pour se déplacer au digit de droite, jusqu'à compléter la valeur et le signe désirés. Le premier digit de gauche contient le signe ["0" = positif, "-" = négatif].

ENTER Valider la configuration de l'affichage et revenir à "-Pro-".

Revenir au début de la programmation "-Pro-"sans valider la donnée.

ESC

ESC

ESC

www.ditel.es

OPTIONS D'AFFICHAGE

L'instrument offre divers types de filtrage du signal qui, utilisés convenablement, procurent une lecture stable mais en occasionnant un certain retard.

Le filtre P est un filtre passe bas qui adoucit la réponse de l'affichage aux variations de l'entrée.

Le **filtre E** écrête les pics du signal en retardant la réponse jusqu'à ce qu'elle se stabilise dans une marge donnée. Le **filtre Average** est une moyenne de plusieurs lectures (programmable jusqu'à 200 lectures).

Le filtre d'Arrondi masque les petites fluctuations de l'affichage avec une sélection jusqu'à 100 points d'affichage.

Il existe en plus diverses options d'affichage qui facilitent la lecture:

- 2 niveaux de brillance des digits adaptable à la clarté ambiante,
- Affichage ou effacement des zéros non significatifs
- 3 vitesses de rafraîchissement de l'affichage.

Sous-menu 24 - OPTIONS D'AFFICHAGE

La figure avec l'indication **"-dSP-"** représente le départ du menu des options d'affichage. Par les touches suivantes on obtient:

Accède à la configuration de la luminosité de l'affichage.

Passe au sous-menu 25 de programmation des filtres.

Retourne au début de la programmation "-Pro-".

La figure montre l'affichage "brIGHt".

Par • , choisir le niveau de brillance ["-HI-" = haut, "-LO-" = bas].

Valide le choix et passe au pas de programmation suivant.

Retourne au début de la programmation "-Pro-" sans valider le choix effectué.

La figure montre l'affichage "LFt-0".

DITEL

Par 🔶 , sélectionner entre les deux alternatives ["-YES-" = pour conserver les zéros non significatifs à gauche "-NO-" = pour les éliminer].

ENTER Valide l'option choisie et passe au pas de programmation suivant.

ESC Retourne au début de la programmation "-Pro-" sans valider le choix effectué.

Programmation du nombre de lectures par seconde, indication "-rAtE-". Ce filtre contrôle la cadence de présentation de l'affichage et des sorties qui le re-

flètent: analogique, BCD et relais. Sélectionner par \checkmark , un niveau de 18, 4 ou 1 lectures par seconde. Les niveaux bas produiront un certain retard de l'affichage. Prendre en compte ce retard pour la programmation des sorties.

ENTER Valider l'option d'affichage et revenir au début de la programmation "-Pro-".

ESC Abandonner sans enregistrer et revenir au début de la programmation.

Sous-menu 25 - FILTRES

Quand la lecture de l'affichage fluctue sous de petites variations du process ou du bruit du signal, on peut activer une série de filtres pour atténuer ou annuler ces fluctuations. Le Filtre-E peut seulement être programmé pour les entrées de process, cellule de charge ou potentiomètre.

La figure indique **"-FILt-"** correspondant au début du menu de configuration des filtres. Agir sur l'une des touches suivantes :

ENTER Accès à la programmation du Filtre-P.

 \blacktriangleright Passer au sous-menu 26 - Arrondi.

ESC Abandonner sans enregistrer et revenir au début de la programmation.

Programmation de la valeur du filtre de pondération, indication "FILt-P". Augmenter le niveau de filtre se traduit par une réponse plus lente de l'affichage aux variations du signal d'entrée. Le niveau 0 indique un filtre désactivé. Sélection-

ner par la touche 💛 un niveau de filtre de 0 à 9.

- ENTER Si l'entrée est de process, cellule de charge ou potentiomètre, valider les données et accéder au filtre-E.
- ENTER Si l'entrée est un signal de température, valider les données et accéder au filtre de lissage (moyenne).

Abandonner sans enregistrer et revenir au début de la programmation .

Programmation de la valeur du filtre de stabilisation, indication "FILt-E".

Permet d'amortir le signal d'entrée en cas de variations brusques du process. Augmenter le niveau de filtre se traduit par une diminution de l'amplitude de la fenêtre capable de provoquer des variations en rapport à l'affichage. Sélectionner par

, un niveau de filtre de 0 à 9. Le niveau 0 indique que le filtre est désactivé.

ENTER Retourner au début de la programmation "-Pro-" et valider la configuration de affichage.

ESC Abandonner sans enregistrer et revenir au début de la programmation .

Programmation de la valeur du filtre de moyenne, indication "AVErAG". Permet de stabiliser l'affichage par réalisation d'une moyenne programmable du

nombre de lectures. Sélectionner par 🔶 un niveau de filtre de 1 à 200.

ENTER Revenir au début de la programmation "-Pro-" et valider la configuration des filtres.

ESC Revenir au début de la programmation "-Pro-" sans valider la configuration du filtre.

ESC

BETA-M/M

68

DITEL

Sous-menu 26 - ARRONDI (Entrées proces, cellule de charge et potentiomètre)

Permet de sélectionner le nombre de points nécessaires pour qu'une variation se produise sur l'affichage.

La figura muestra la indicación **"-round"** correspondiente al inicio del menú de configuración del redondeo. Pulse una de las siguientes teclas:

ENTER Acceso a la programación del valor de redondeo.

ESC

Pasar al siguiente submenú.

Cancelar la programación y retornar al inicio de la programación "-Pro-".

Programmation de la valeur d'arrondi, indication "-round".

A l'aide de la touche sélectionner la variation d'affichage par pas de ["**001**" = 1 point, "**005**" = 5 points, "**010**" = 10 points, "**020**" = 20 points, «**050** » = 50 points et « **100** » = 100 points].

ENTER Validez les données et accédez à l'étape suivante du programme.

Annuler la programmation et revenir au début de la programmation "-Pro-".

BETA-M/M2

CALCUL DE VOLUME

Visualiser un Volume en Fonction de la Pression

Il existe diverses manières de calculer un volume contenu par un réservoir de forme curviligne ou irrégulière.

Si, dans la partie inférieure du réservoir, on place un capteur de pression avec une échelle appropriée on aura à tout moment la valeur de la hauteur du liquide par rapport au niveau de ce capteur.

Pour visualiser le volume, l'instrument dispose de diverses solutions :

 Échelonner l'entrée pour indiquer directement le volume en utilisant la méthode teach et la linéarisation par trames.

La méthode consiste à remplir le réservoir avec des volumes connus pour différentes hauteurs. A chaque hauteur, faire un "teach" du signal d'entrée et programmer la quantité en volume correspondante. Plus le nombre de points programmés est important, plus précise sera la mesure.

- 2. Si la forme du réservoir est régulière et si la relation mathématique entre signal d'entrée et volume à indiquer, il est seulement nécessaire de programmer l'affichage du volume correspondant aux points haut et bas de l'entrée. Par exemple dans un réservoir cylindrique vertical le volume est le produit de la surface de base et de la hauteur du liquide contenu.
- 3. Une troisième méthode pour indiquer le volume est de laisser l'instrument faire les calculs automatiquement en fonction du signal d'entrée. Cette méthode s'utilise lorsque la forme du réservoir sera l'une des quatre représentée à la figure ci-contre.

Calcul Automatique de Volume

L'instrument calcule automatiquement le volume de réservoirs de forme sphérique, cylindrique, combinaison de cylindre et sphère et silo tronconique. L'utilisateur n'a seulement qu'à composer les dimmensions du réservoir appelées pas à pas par le programme.

tYP 4

02.000

06.000

03.000

00.000

03.000

27 dIAM

01.000

00000

LEn-

LEn-

27 LEn-1

27 dIAM-

27 SHAP

tYP 3

27 SHAPE

02.000

27 dIAM-1

06.000

27 LEn-1

00000.

Exemple de Programmation pour le calcul de Volume

Supposons un réservoir selon la forme de la fig. 3, soit un cylindre horizontal avec des fonds semi sphériques. Un capteur de pression placé à la base du réservoir donne un signal proportionnel à la hauteur du liquide.

DITEL •

Le premier pas consiste à échelonner l'instrument pour que la lecture de la hauteur du liquide, qui sera utilisée postérieurement, soit en mètres.

La relation entre pression et hauteur est linéaire et il est suffisant de programmer l'échelle avec deux points.

Ce qui conduit à programmer deux valeurs d'entrée du signal correspondant à deux valeurs de hauteur en mètres.

Il est important que le point décimal sélectionné dans le menu d'échelle marque la position des unités en mètres. Par exemple, 1,5 m sera peut se programmer comme 1.5000, 01.500, 001.50 ou 0001.5

Le pas suivant est de sélectionner la forme du réservoir et d'introduire ses dimensions. Ceci se réalise au menu 27-Vol-.

Sous-menu 27 - CALCUL DE VOLUME

Ce menu apparaît exclusivement pour l'utilisation en process ou potentiomètre. Il n'est pas possible d'utiliser cette fonction si l'intégrateur (menu 23) est actif. Pour que l'instrument calcule automatiquement le volume en fonction de la pression, il est nécessaire que la forme du réservoir disponible soit l'une de celles représentées à la page précédente.

tYP 1

27 SHAPE

02.000

27 dIAM-1

00000.

27 dIAM-1

no

tYP 2

02,000

06.000

27 LEn-1

00000.

27 dIAM-

27 SHAPE

La figure avec l'indication "-VoL-" correspond au début du menu de configuration de l'option de calcul automatique de volume. Utiliser les touches suivantes:

 \frown Passer au Sous-menu 21 - SCAL.

ESC Revenir au début de la programmation sans enregistrer les données.

Sélection de la **forme du réservoir**. Il a cinq options: -**no**- pour désactiver l'option, -**tYP 1**- pour forme de sphère, -**tYP 2**- pour cylindre horizontal, -**tYP 3**- pour cylindre horizontal avec fonds hemisphériques et -tYP 4- pour silo avec base troncconique.

Par 🔸 , sélectionner la forme du réservoir (ou l'option -no- pour désactiver l'option.

ENTER Valider la sélection et avancer d'un pas (ou retourner au niveau "-Pro").

ESC Revenir au début de la programmation sans enregistrer les données.

Une fois sélectionnée la forme, il est nécessaire d'introduire les dimensions du réservoir selon la forme sélectionnée.

Sur la figure, il est montré l'étape d'entrée du diamètre 1. Appuyer successive-

ment la touche pour incrémenter le digit clignotant et la touche pour se déplacer au digit de droite jusqu'à compléter la valeur désirée en mètres (la position du point décimal donne la position des unités en mètre).

ENTER

Valider la donnée et passer à la programmation de la longueur.

ESC Revenir au début de la programmation sans enregistrer la donnée.

Si la forme du réservoir sélectionnée est une **sphère** (tYP 1), on **ne programme pas la longueur**.

Dans ce cas, aller directement à la programmation du point décimal.

Pour le reste, appuyer successivement sur 🔺 pour incrémenter le digit cligno-

tant par , se déplacer au digit de la droite, jusqu'à compléter à l'affichage la **longueur** en mètres désirée (la position du point décimal donne la position des unités en mètres).

Valider les données et accéder au pas suivant du programme.

Revenir au début de la programmation "-Pro-"sans valider les données.

SILO : Quand la forme du réservoir sélectionnée est un silo (tYP 4), le pas suivant de programme est le diamètre 2. Il est nécessaire de programmer au total **trois diamètres et trois longueurs**. Si le silo a une forme composée par seulement une ou deux des parties en lesquelles il est divisé, la longueur correspondante à la partie qui se programme sera zéro. Une fois compétée la programmation des dimensions du réservoir, passer à la programmation du point décimal de l'affichage.

Le point décimal est clignotant sur l'affichage principal. Appuyer successivement la

touche , pour le déplacer à la position désirée. Si le point décimal n'est pas utile, le déplacer au dernier digit à droite.

Valider la position choisie et accéder au pas suivant de programme.

Revenir au début de la programmation "-Pro-"sans valider les données.

FRANCAI

ESC

71

FONCTIONS PAR CLAVIER

Avec le clavier on peut contrôler les fonctions suivantes: TARE, RAZ, LIMIT et MAX/MIN. Ci-après est décrit le fonctionnement lorsqu'on l'utilise en mode "RUN" (mode travail).

Touche TARE

Chaque fois que l'on appuie sur cette touche, la valeur affichée s'absorbe en mémoire comme tare.

L'éclairage de la led « TARE » indique que l'instrument travaille avec une valeur de tare ou un offset contenu en mémoire. Il est possible de visualiser la valeur absor-

bée en tare ou offset programmé en agissant sur la touche .

Pour remettre à zéro la mémoire de tare, appuyer en permanence sur la touche reser puis donner une impulsion

sur la touche et enfin relâcher

Si la touche tare a été bloquée l'opération ne s'effectue pas. Il faut alors débloquer la touche puis après déblocage et effacement de la tare, bloquer son accès pour revenir à l'état initial du verrouillage.

Touche LIMIT

Seulement valide si l'appareil contient une option seuils [2 seuils relais (réf. 2RE), 4 seuils relais (réf. 4RE), 4 seuils NPN (réf. 4OP) ou 4 seuils PNP (réf. 4OPP).

Par appuis successifs sur , on lit la valeur de présélection de chacun des seuils sur l'affichage secondaire et le n° du seuil L1, L2, L3 ou L4 sur l'affichage auxiliaire.

Les valeurs de seuils apparaissent de 1 à 4 que ceux ci soient activés ou inhibés. Un nouvel appui sur le seuil 4 éteindra les deux affichages secondaire et auxiliaire.

Pendant l'affichage de la valeur de l'un des seuils, les autres touches restent actives.

Touche MAX/MIN

Cette touche appelle sur l'affichage secondaire les paramètres suivants :

Première impulsion : pic, Seconde impulsion : Val

Troisième impulsion : Tare ou offset. Quatrième impulsion : Si l'intégrateur est actif, appel de la valeur du totalisateur. Sinon et si l'instrument est configuré pour cellule de charge et s'il est programmé avec une entrée logique avec la fonction 30 (totalisateur + batch) la cin-quième impulsion appelle le nombre d'opérations 'batch'' (sommes) réalisées. Une nouvelle impulsion éteint l'affichage secondaire.

L'affichage auxiliaire indique quel type de variable est présente à l'affichage secondaire : 'HI' = pic, 'Lo' = val, 'tA' = tare, 'oF' = offset, 'bA' = n^o batch. La valeur du totalisateur est visualisée sur les huit digits inférieurs.

Le paramètre sélectionné se visualise en permanence et s'actualise au rythme de la variable principale.

Touche RAZ

Appuyer successivement sur jusqu'à ce que le paramètre désiré apparaisse sur l'affichage secondaire. Le paramètre peut être pic ('HI'), val ('Lo'), total ou n° batch (`bA').

Appuyer sur la touche reserve ta maintenir puis donner une impulsion sur reserve. Relâcher alors la touche reserve Si on réalise une tare ou une RAZ de tare, les valeurs de pic et val se s'indexent automatiquement au décalage de zéro provogué.

Touche ENTER (3s)

Un appui d'une durée égale ou supérieure à 3 secondes permet l'accès aux routines de blocage de la programmation.

Touches RAZ + ENTER (3s) Un maintien de 3 secondes des touches RESET et ENTER renvoie l'instrument à la programmation d'origine d'usine :

- 1 : Appuyer de façon continue sur RESET,
- 2 : Appuyer sur ENTER jusqu'à éclairage de la led STORE indiquant que la programmation initiale est prise en
- compte en mémoire.
- 3 : relâcher les touches.

		Ē	5	
			\geq	

FONCTIONS PAR ENTRÉES LOGIQUES

Le connecteur CN2 composé de 4 entrées optocouplées qui s'activent au moyen de contacts ou de niveaux en provenance d'une électronique externe. Ainsi on peut ajouter quatre fonctions supplémentaires aux fonctions existantes à activation par touches. Chaque fonction est associée à une entrée (PIN 1, PIN 2, PIN 4 et PIN 5) qui s'active en appliquant un niveau bas à chacune par rapport à PIN 3 (COMMUN). L'association s'effectue par logiciel qui relie un numéro de fonction (de 0 à 36) à l'une des entrées logiques du connecteur CN2.

Configuration d'usine

Le bornier CN2 est livré configuré avec les mêmes fonctions TARE, MAX/MIN y RESET réalisables par clavier et aussi avec la fonction HOLD.

Quand on effectue un HOLD, la valeur d'affichage reste bloquée durant le maintien de l'entrée HOLD. L'état du HOLD n'affecte pas le fonctionnement interne de l'instrument ni les seuils, mais les sorties analogiques et BCD restent également bloquées.

PIN (INPUT)	Fonction	Numéro
PIN 1 (INP-1)	RESET	Fonction nº 7
PIN 2 (INP-2)	HOLD	Fonction n ^o 9
PIN 3	COMMUN	
PIN 4 (INP-4)	TARE	Fonction nº 1
PIN 5 (INP-5)	PIC/VAL	Función n ^o 6

Connexion avec tensión externe : Placer un pont entre J1(2) et J2(5)

Fig.[47.1] Changement de logique CN2 CN2 type d'entrée **PNP** J1 (2-3) J2 (5-6) **NPN** J1 (1-2) J2 (4-5)

FRANCA

L'électronique extérieure (fig. 47.1) qui s'applique aux entrées du connecteur CN2 doit être capable de supporter un potentiel de 40 V/ 20 mA à tous les points de raccordement par rapport au commun. Pour garantir la compatibilité électromagnétique on devra tenir compte des recommandations de raccordement de la page 47.

TABLE DES FONCTIONS PROGRAMMABLES

- N° : Numéro de la fonction utilisée pour la programmation de son association à une entrée.
- Fonction : Nom de la fonction et de la commande externe.
- <u>Description</u> : Rôle de la fonction et caractéristiques.
- Activation par :

Impulsion : La fonction s'active en appliquant un flanc négatif à l'entrée par rapport au commun.

Entrée maintenue : La fonction est active tant que le niveau bas par rapport au commun est maintenu.

(*) Configuration d'usine. En associant la fonction 0 à toutes les entrées, on revient à la configuration de fabrication.

De 0 à 9: FONCTIONS D'AFFICHAGE ET DE MEMOIRES

No	Fonction	Description	Activation par
0	Désactivée	Aucune	Aucune
1	TARE (*)	Ajoute la valeur affichée à la mémoire de tare et passe l'affichage à zéro	Impulsion
2	RESET TARE	Ajoute la mémoire de tare à l'affichage et efface la tare en mémoire.	Impulsion
3	PIC	Fait afficher la valeur PIC. Ou autre impulsion, retourne à la lecture.	Impulsion
4	VAL	Fait afficher la valeur VAL. Ou autre impulsion, retourne à la lecture.	Impulsion
5	RESET PIC/VAL	Réinitialise PIC ou VAL (selon celui qui est affiché à l'affichage principal).	Impulsion
6	PICO/VALLE (*)	1^{ere} impulsion affichage PIC, 2^{eme} impulsion affiche VAL, 3^{eme} impulsion retourne à la lecture.	Impulsion
7	RESET (*)	Combinée avec (1) efface la tare. Combinée avec (6) réinitialise PIC ou VAL.	Entrée maintenue avec (1) ou (6)
8	HOLD1	Bloque l'affichage alors que toutes les sorties restent actives.	Entrée maintenue
9	HOLD2 (*)	Bloque l'affichage et les sortie BCD et analogique.	Entrée maintenue

BETA-M/M2

De 10 à 12: FONCTIONS ASSOCIABLES AVEC LA VARIABLE DE MESURE

No	Fonction	Description	Activation par
10	INPUT	Affiche la valeur réelle de la tension d'entrée, en mV (clignotant).	Entrée maintenue
11	BRUT	Affiche valeur mesurée + valeur de tare = valeur brute	Entrée maintenue
12	TARE	Affiche la valeur de la tare en mémoire.	Entrée maintenue

De 13 à 16: FONCTIONS ASSOCIÉES A LA SORTIE ANALOGIQUE

No	Fonction	Description	Activation par
13	ANALOGIQUE BRUT	La sortie analogique est l'image du brut (valeur affichage +tare).	Entrée maintenue
14	ANALOGIQUE ZÉRO	Place la sortie analogique à zéro (0-10V à 0V et 4-20mA à 4mA)	Entrée maintenue
15	ANALOGIQUE PIC	La sortie analogique suit l'évolution de la valeur de PIC.	Entrée maintenue
16	ANALOGIQUE VAL	La sortie analogique suit l'évolution de la valeur de VAL.	Entrée maintenue

De 17 à 23: FONCTIONS POUR L'UTILISATION D'UNE IMPRIMANTE SUR SORTIE RS

Nº	Función	Descripción	Activación por
17	IMPRIMER NET	Imprime la valeur nette.	Impulsion
18	IMPRIMER BRUT	Imprime la valeur brute.	Impulsion
19	IMPRIMER TARE	Imprime la valeur de tare.	Impulsion
20	IMPRIMER SET1	Imprime la valeur du seuil 1 et son état.	Impulsion
21	IMPRIMER SET2	Imprime la valeur du seuil 2 et son état.	Impulsion
22	IMPRIMER SET3	Imprime la valeur du seuil 3 et son état.	Impulsion
23	IMPRIMER SET4	Imprime la valeur du seuil 4 et son état.	Impulsion

De 24 à 25: FONCTIONS ASSOCIÉES AVEC LES SORTIES SEUILS

No	Fonction	Description	Activation par
24	FAUX SEUILS	Utilisé exclusivement pour les instruments qui n'ont pas d'option relais ou opto installée. Permet la programmation et l'utilisation de 4 seuils.	Entrée maintenue
25	RAZ DES SEUILS	Usage exclusif pour instruments programmés avec seuils « latchs ». Désactive les relais auto maintenus.	Impulsion

De 26 à 36: NOUVELLES FONCTIONS

Nº	Fonction	Description	Activation par
26	ARRONDI RS	Transmission à la sortie série de la valeur d'affichage sans arrondi ni filtres.	Entrée maintenue
27	ARRONDI BCD	Transmission à la sortie BCD de la valeur d'affichage sans arrondi ni filtres.	Entrée maintenue
28	Envoyer en ASCII	Transmission des 4 derniers digits de l'affichage vers un indicateur ASCII. Un niveau bas maintenu sur le pin de fonction provoque l'envoi continu de l'affichage à la vitesse de 1 message par seconde.	Impulsion ou Entrée maintenue
29	Désactiver les Seuils	Désactive les seuils et met les sorties en état de repos.	Entrée maintenue
30	Compteur de lots	Additionner la valeur du display au compteur et incrémenter une fois le compteur de lots.	Impulsion
31	Affichage du TOTAL	Montre alternativement la partie supérieure et inférieure du totalisa- teur, l'affichage auxiliaire affichant respectivement « H » et « L »	Entrée maintenue
32	Affichage du LOTS	Affiche la valeur du compteur de lots. L'affichage auxiliaire indique « b »	Entrée maintenue
33	Reset Total et Lots	Mise à zéro du totalisateur et du compteur de lots	Impulsion
35	Imprimer Total et Lots	Imprime la valeur du totalisateur et du compteur de lots	Impulsion
36	Hold et impression du MAX	Met à zéro la valeur du Max. à l'activation, enregistre durant toute la durée de l'activation la valeur mesurée la plus élevée et à la désactivation enregistre cette valeur et l'imprime	Entrée maintenue

PROGRAMMATION DES ENTRÉES LÓGIQUES

Si nous avons déjà décidé quelles fonctions nous allons programmer pour le connecteur, nous pouvons accéder au module 6 pour configurer les entrées logiques. Celui-ci se compose de quatre menus configurables, un pour chaque PIN du connecteur CN2.

Pour accéder au menu 60 d'association des entrées avec les fonctions lo-

giques, appuyer sur **ENTER** pour passer du mode de travail au mode programma-

tion et ensuite par la touche
, arriver jusqu'à afficher l'indication "LoGInP".

Ensuite, appuyer à nouveau sur (ENTER), pour accéder à quatre sous-menus, un pour chaque broche du connecteur CN2.

Déplacement d'un sous menu à l'autre par 🕨 .

On peut choisir un numéro de fonction entre 0 et 36.

Consulter les tableaux, pour la description et le mode d'activation de chacune des fonctions préprogrammées. Ci-dessous est donnée l'explication pour la programmation de la broche 1 (Pin1).

Les autres broches, (Pin2, Pin3 et Pin4) se configurent de manière identique

MENU 61 - Programmation du PIN 1

La figure avec l'indication **(InP-1)** correspondante au sous-menu de configuration de la fonction du Pin 1. Sélectionner le numéro de la fonction [0÷36]. Consulter pour cela le tableau de fonctions programmables.

Passer au sous-menu 62 de programmation du (Pin 2).

Modifier le numéro de fonction.

Valider les données et revenir au début de la programmation.

Revenir au début de la programmation sans enregistrer de modification.

BLOCAGE DE LA PROGRAMMATION

Diagramme du menu de sécurité

La fig. ci-contre représente le menu spécial à la sécurité. Il se configure selon le blocage de la programmation (total ou partiel). Son accès, à partir du mode travail, s'effectue par une pression égale ou supérieure

à 3 secondes sur la touche ENTER, jusqu'à ce qu'apparaisse l'indication "CodE".

Le code d'origine pour la sécurité d'accès est par défaut "0000". Une fois composée l'indication "CHAnGE" nous permettra d'introduire un nouveau code personnel qu'il est conseillé de noter et conserver convenablement. A partir de ce moment, le code d'origine ne sera plus utilisable

L'introduction de tout code incorrect sera refusée et l'instrument reviendra immédiatement au mode travail.

- Le blocage total de la programmation, indication "tot-LC", se réalise par changement de la valeur affichée à 1.
- Le blocage partiel de la programmation se réalise en passant la valeur à "0". Puis on devra faire défiler tous les sous-menus dont la programmation peut être bloquée en affectant le "1" pour ceux qui devront effectivement interdit d'accès

La indication "StorE" signale que les modifications effectuées ont été prises en compte par l'appareil.

L'instrument est livré avec la programmation déverrouillée, permettant l'accès libre à tous les niveaux de programmation. Une fois complétée la programmation de l'instrument nous recommandons d'observer les mesures de sécurité suivantes :

Bloquer l'accès à la programmation, pour éviter les modifications intempestives des paramètres programmés. .

Bloquer les fonctions du clavier dont on n'a pas l'usage en mode travail et qui pourraient altérer accidentellement le programme.

Il existe deux modalités de blocage :

Blocage partiel : Si les paramètres de programmation doivent être programmés fréquemment.

Blocage total: Toujours préférable pour garantir la sauvegarde des paramètres de la programmation.

Le blocage des fonctions du clavier reste toujours possible.

Le blocage s'effectue par logiciel avec l'introduction préalable d'un code personnalisé. Changer dès que possible le code de fabrication puis noter et conserver le nouveau code personnalisé.

BLOCAGE TOTAL

Le bocage total, **interdit tout accès à l'introduction et à la modification des paramètres de la programmation** mais laisse l'accès libre à leur lecture.

Le message délivré par l'affichage secondaire en cas de blocage total est "-dAtA-".

BLOCAGE PARTIEL

Le blocage partiel permet l'accès **en lecture** à tous les niveaux de la programmation mais on ne pourra introduire ou modifier aucun des paramètres situés dans l'une des parties bloquées. Dans ce cas, quand on entre dans les menus non bloqués, l'indication de l'affichage secondaire est "-Pro-".

- Les menus ou sous-menus que peuvent être bloqués sont :
- Programmation du seuil 1 (menu 31).
- Programmation du seuil 2 (menu 32).
- Programmation du seuil3 (menu 33).
- Programmation du seuil 4 (menu 34).
- Programmation (module 10).
- Échelle (menus 21/22, 23 et 27).
- Options de affichage et filtres (menus 24, 25 et 26).
- Programmation sortie analogique (module 40).
- Configuration sortie série (module 50).
- Programmation des entrées logiques (module 60).
- Accès direct à la programmation des Seuils.

Auxquels il faut ajouter les menus correspondant aux options installées ("SEt1", "SEt2", "SEt3", "SEt4", "AnAout" ou "rS Com"

NOUVELLES FONCTIONS DU MODULE RELAIS

<u>Utiliser le point de consigne 2 pour</u> <u>détecter le pic</u>

L'option 'MAX' permet la détection du pic sans filtre, l'option 'MAX-F' permet la détection valeurs de pic avec filtre.

Dans ce cas, il faut ternir compte des différents modes de travail des seuils programmés (Latch, HI-LO, RET-HYS, Blink).

La valeur à programmer dans le paramètre "valeur de seuil" sera la valeur de l'affichage à partir duquel commence à évoluer le pic (Au dessous de cette valeur, pas d'activation).

La valeur à programmer dans le paramètre valeur retard / hystérésis sera le temps que le seuil sera activé une fois que le pic sera mesuré (sauf en fonction latch). La sortie s'active quand la valeur de l'affichage commence à augmenter (une fois dépassée la valeur du seuil 2 enregistrée) pendant un nombre de lectures programmées par l'utilisateur compris entre 0 et 99.

La programmation du nombre de lectures suit dans la programmation du mode de travail du seuil2 quand on a sélectionné cette option.

Activer/ désactiver le seuil au moyen d'ordres par rs232C ou rs485

La programmation ce cette fonction se fait à la sélection de l'option "CoM" au niveau de la sélection de l'activation du seuil. Le reste des options n'apparaît pas dans la routine de programmation excepté le clignotement de l'affichage. Une fois activées, les sorties ne se désactivent pas en dépassement d'échelle ni au passage en mode programmation.

Comparaison des seuils avec la valeur du totalisateur

Dans ce cas la valeur de seuil se programme sur l'affichage secondaire. Le reste des options est identique à celui d'un seuil normal.

MODES DE TARE

À l'aide de la touche , nous sélectionnons la manière dont l'instrument traitera le processus de tarage. Chaque fois que l'on accède à ce menu, la valeur de tare stockée dans la mémoire de l'instrument sera remise à zéro et, comme toujours lorsque l'instrument se trouve dans cet état, le voyant TARE s'éteint. Une fois le mode de fonctionnement sélectionné, nous passons au mode « RUN », à partir duquel le processus de tarage sera effectué.

ERrE I	TArE1 mode de l'instrument à une impulsion des magasins touche TARE la valeur affichée à l'écran à ce moment si ce n'est dans plus de grandeur, TARE s'allume, et dès ce moment la valeur indiquée est la valeur nette, l'mesurée moins la valeur stockée. Si l'appareil présentant un défaut, se produit à nouveau en appuyant simplement sur la même touche, la valeur affichée à ce moment est ajouté à la tare déjà enregistrée, soit la somme de deux défauts qui en résultent.
ERrE2	Dans ce mode, la touche TARE n´a pas d´effet quand l´instrument est en RUN. La valeur de tare nous l´introduisons maintenant manuellement. Le fonctionnement de l´instrument restant le même que dans le mode antérieur. Nous accédons au menu d´édition depuis le mode "RUN", en appuyant sur la touche ENTER qui nous amènera à –Pro- et en appuyant sur la touche TARE plus de trois
	secondes nous pourrons alors par l'intermédiaire des touches et introduire la valeur de tare en mémoire puis en appuyant sur la touche ENTER nous reviendrons a RUN le LED TARE étant alors allumé. Il n'est alors pas possible d'effectuer d'autres tares depuis le clavier, il est nécessaire de la reprogrammer pour l'annuler.
	Créer une variable qui appel valeur net, accessible à partir de "RUN" après avoir appuyé pendant 3
68rE3	secondes sur la touche et après son tour, le schéma (page 45), le programme net (habituellement indiquée sur le contenant) L'action de faire Tara, comme dans le premier cas, ne
	prendront effet jusqu'à ce que la séquence de touches , être l'instrument en mode RUN, l'ac- tivation de la LED TARE. La valeur de la tare est maintenant stocké dans la différence entre la va- leur mesurée par l'appareil lorsque l'action s'est produite dans la tare et la valeur nette. Tant que la valeur indiquée à la différence entre la valeur mesurée et la valeur de la tare. Vous aurez besoin d'entrer dans le menu de programmation et de passer par "CndSP" > "ModtA" de sorte que la tare est remise à zéro, la touche TARE sera inactif jusqu'à ce que reprogrammé.
Exemple:	

Un processus en utilisant le liquide dans un récipient que l'on sait que les spécifications de poids brut fabricante, 100 kg et 75 kg net. Il est utilisé dans le processus de pesée d'un capteur connecté à un instrument et la nécessité de connaître le poids net du liquide à chaque instant du processus. La sélection de cette mode de la tare, la valeur nette serait introduit par le montage. Lorsque l'instrument est la mesure de la pesée du tambour, maintenant complètement remplie de liquide, ce qui serait de 100 kg, tare de l'instrument pour mesurer en train de passer de 75 kg, et la mesure de cette valeur à 0 lors de la vidange de celui-ci.

Programmation:

Si vous avez sélectionné l'entrée processus ou potentiomètre, dans le menu 20 "CndSP" après le sous-menu 27 "-VoL-"

et en appuyant à nouveau sur 🕑 nous avons accès aux sous-menu **ModTA**.

Si vous sélectionnez l'entrée LOAD CELL, dans le menu 20 "CndSP" âpres le sous-menu 26 et appuyant de nouveau

• nous somme dans le sous-menu **ModTA**.

Si vous sélectionnez process ou Potentiomèter

PROGRAMMATION VALEUR NETTE EN TARE MODE 3

Pour éditer la valeur nette, lorsque l'instrument est en mode tra-

vail, nous appuyons sur la touche et lorsque apparait

l'indication -Pro-appuyer sur la touche plus de 3 secondes : la dernière valeur de tare programmée apparait alors et le digit le plus a gauche se met à clignoter. Par l'intermédiaire des

touches et nous programmerons la valeur POIDS NET indiqué normalement sur le récipient, nous validerons en-

suite en appuyant sur la touche et l'instrument reviendra alors en fonctionnement normal ; à ce moment là et avec le récipient sur la plateforme nous appuierons sur la touche

(I) instrument se mettant alors à indiquer le poids net programmé et le led TARE sera activé. A partir de ce moment la touche TARE n'aura plus d'effet sur l'indication du poids.

SENSOR BREAK

Cette fonction permet la détection de la rupture d'un ou plusieurs des fils qui connecte le capteur « cellule de charge » a l'instrument. L'analyse pour détecter la rupture de chaque fil est réalisée toutes les 1,5 secondes et la réponse des relais et de la sortie analogique sera la même que dans le cas ou se produit un dépassement d'échelle (DuFLD), un excès de signal d'entrée.

NOTE : Le système de détection fonctionnera à condition que le capteur soit alimenté avec la tension d'excitation pou transducteurs fourni par l'instrument.

Si l'entrée "Load Cell" a été programmée, dans le menu 20 "CndSP" après le sous-menu 28, en appuyant à nouveau

sur la touche , on accède au menu 29 **-Sbr- Sensor Break** et en appuyant sur la touche, *si le st possible de sélectionner -on- pour activer la fonction ou –oFF- pour la désactiver.*

FAIL SAFE

Fonction qui permet la détection d'un défaut d'alimentation ou de l'instrument et informer un dispositif extérieur (PLC, Système général de supervision).

Cette fonction peut être programmée pour un quelconque des relais actifs 31, 32, 33, 34 après la programmation des paramètres **"-Hi-Lo-"** montrera **"-no nc-"** (non = normalement ouvert), (NC = normalement fermé)

-nc— ce est le mode FAIL SAFE

r.o.C. Fonction / (rate of Change) Changement de Vitesse

L'option r.o.C. s'utilise pour détecter un changement de vitesse positif ou négatif de l'évolution de l'affichage, la direction du changement est déterminé par le signe du Setpoint.

En mode **r.o.C.**, si la valeur de consigne est par exemple = 1000, cela signifie que l'alarme est activée lorsque l'affichage augmente á une vitesse de plus de 1000 points par seconde.

Si la valeur de consigne est par exemple = -1000, l'alarme est activée lorsque l'affichage diminue á une vitesse de plus de 1000 points par seconde.

Les alarmes **r.o.C.** gardent les mêmes options que le reste des alarmes programmables, c'est á dire, vous pouvez choisir le mode d'action de HI-LO, NO-NC, Latch, Delay- hystérésis, LED-LED+intermittence. La seule différence dans les alarmes ROC est que si vous sélectionnez Delay, il ne s'appliquera pas à l'activation et la désactivation, mais uniquement à la désactivation de l'alarme.

Esta función es aplicable a cada setpoint por separado.

Programmation:

Si l'entrée a été programmée : Process, Potentiometer, Load Cell, dans le sous-menu 31 CoMP après « -VAL- » en

appuvant sur la touche 🔎 on accède à la fonction r.o.C., ou dans le sous-menu 32 on y accède après MaxF ou totAL (si activé).

Si entrée Temp a été programmée, dans le sous-menu 31, 32, 33, 34 on y accède après –VAL-

NB: En situation de ovflo (que ce soit pour rupture de capteur, excès de signal d'entrée ou program**mation incorrecte)** les relais passent en état de repos définit selon leur programmation.

PROCESS, POTENTIOMÈTRE et CELLULE DE CHARGE

nEt	GroS	PEAK	VAL	MAX(*)	MAXF(*)	totAL(**)	roC

(*) Unique Setpoint 2 (**) Uniquement si el totalisateur ou integrateur est activé

THERMOCOUPLE et PT100

doSE / DOSAGE

Si vous avez défini l'entrée "Load Cell, potentiomètre ou process", seulement dans le menu 31, vous pouvez sélectionner la fonction «doSE»

MODE DE FONCTIONEMENT "doSE"

Lorsque «doSE» est sélectionné dans le menu du seuil 1 la valeur pour la comparaison ne peut pas être choisi, car il sera Dans la valeur nette de l'affichage.

On ne peut choisir le mode HI ou LO car il dépendra de si la consigne est positive (HI) ou négative (LO) et la valeur numérique de la consigne sera obligatoire de le programmé Dans la rutine d'accès directe des seuils (touches ENTRER et limite).

Lorsque vous quittez le menu avec l'option 31 "dose" sélectionné, le seuil reste bloqué et fonctionnera pas. Pour démarrer en mode travail doit obligatoirement fer l'accès directe a seuils et programmer la valeur de dosage. En appuyant sur ENTRER la valeur de consigne est ajouté à la valeur interne net (si elle est positive, et est automatiquement HI-mode "ou soustrait (s'il est négatif, et est automatiquement-LO-mode). A partir du moment l'opération du seuil 1 est activé.

Chaque fois que les augmentations d'affichage (HI) ou diminutions (LO) dans un certain nombre de points égal à la consigne programmée dans le seuil 1 la sortie relé1 sera activé.

De la même façon, si la fonction logique nº 30 a été programmée, la valeur de seuil sera additionnée aux totalisateur on s'incrémenter en une unité la valeur du conteur batch.

Si vous activez la fonction correspondant permet également d'afficher le total et le batch.

(*) Ne peut être programmée TRAC si le menu 31 a été programmé «doSE»

oFF on	CoM	doSE
--------	-----	------

SPECIFICATIONS TECHNIQUES

ENTRÉE

Configuration	différentiel as	ymétrique
Entrée Process	Tension	Courant
	±10Vdc	±20mAdc
Résolution maxi	0.1mV	1µA
Impedance d'entrée	1MΩ	15Ω
Excitation24	/@30mA, 10/5\	/@120mA)
Erreur maximale	±(0.1% lectur	re + 3 dig)
Coefficient de température	100)ppm / °C

Entrée Cellule de Charge

Tension	±300mVdc
Résolution maxi	0.15 μV
Impedance d'entrée	100ΜΩ
Excitation	10/5V @ 120mA
Erreur maximale	$\pm (0.1\% \text{ lecture} + 6 \text{ dig})$
Coefficient de température	e 100ppm / °C

Entrée potentiomètre

Tension	±10Vdc
Impedance d'entrée	10 MΩ
Resolution d'affichage	0.001%
Erreur maximale	±(0.1% lecture + 3 dig)
Coefficient de température	e 100ppm / °C

Entrée Température

Compensation jonction fro	bide10 °C a +60 °C
Jonction froide	±(0.05 °C/ °C +0.1 °C)
Courant excitation Pt100	< 1 mA dc
Résistance maximale du c	âbles40 Ω/câble
(equilibré)	
Coefficient de température	e100 ppm/ °C

Entrée	Plage (res. 0.1 °)	Précision (res. 0.1°)	Plage (res. 1 ^o)	Précision (res. 1º)
TC <i>``1″</i>	-200.0 à +1100.0 °C	0.4% L ±0.6 °C	-200 à +1100 °C	0.4% L ±1 ° C
	-328.0 à +2012.0 ºF	0.4% L ±1 ºF	-328 à +1472 ºF	0.4% L ±2 º F
TC "K"	-200.0 à +1200.0 °C	0.4% L ±0.6 °C	-200 à +1200 °C	0.4% L ±1 º C
IC K	-328.0 à +2192.0 ºF	0.4% L ±1 ºF	-328 à +2192 ºF	0.4% L ±2 ° F
тс »т″	-150.0 à +400.0 °C	0.4% L ±0.6 °C	-150 à +400 ℃	0.4% L ±1 ° C
	-302.0 à +752.0 ºF	0.4% L ±1 ºF	-302 à +752 ºF	0.4% L ±2 ° F
TC "P"	-50.0 à 1700.0 °C	0.5% L ±2 ºC	-50 à 1700 °C	0.5% L ±4 º C
ICK	-58.0 à +3092.0 ºF	0.5% L ±4 ºF	-58 à +3092 ºF	0.5% L ±7 º F
TC "S"	-50,0 à 1700,0 °C	0.5% L ±2 °C	-50 à 1700 °C	0.5% L ±4 ° C
10.5	-58.0 à +3092.0 ºF	0.5% L ±4 ºF	-58 à +3092 ºF	0.5% L ±7 ° F
TC "F"	-200.0 à 1000.0 °C	0.4% L ±1 ºC	-200 à 1000 °C	0.4% L ±2 °C
IC E	-328.0 à +1832.0 ºF	0.4% L ±2 ºF	-328 à +1832 ºF	0.4% L ±4 ºF
Pt100	-100.0 à +800.0 °C	0.2% L ±0.6 °C	-100 à +800 °C	0.2% L ±1 °C
	-148.0 à +1472.0 ºF	0.2% L ±1 ºF	-148 à +1472 ºF	0.2% L ±2 ºF

FUSIBLES (DIN 41661) (Non fournis)

Beta-M (230/115 V AC)	F 0.2 A/ 250 V
Beta-M2 (24/48 V AC) .	F 0.5A/ 250 V

CONVERSION

Technique	ΣΔ
Résolution	24 bits
Cadence	18/ s
Temps de mise en température	10 min

FILTRES

Fillre P	
Fréquence de coupure (- 3 dB)	de 4Hz à 0.05Hz
Pente	de 14 à 37dB/10
Filtre E	
Programmable	10 niveaux

AFFICHAGE

999, 6 digits rouges 14 mm
2+6 digits verts 8 mm
programmable
de fonctions + 4 de sorties
55.5 ms/ 250 ms/ 1 s

INDICATIONS D'ERREUR

Dépassement échelle negatif	OuFLO
Dépassement échelle positif	+ OuFLO
Sensor break	

ALIMENTATION

BETA-M	115/ 230 V, (±10%) 50/60 Hz AC
BETA-M2	
Consommation	5 W (sans options), 10 W (maxi)

ENVIRONMENTALS

Indoor use

Temp. de travail	10°C à 60°C
Température de stockage	25 °C à +85 °C
Humidité relative non condensée	<95 % à 40 °C
Altitude maximale	2000 m

DIMENSIONS

Dimensions	96x48x120 mm
Poids	600 g
Matériau du boîtier	polycarbonate s/UL 94 V-0
Etanchéité frontale	IP65

INDEX

Introduction to BETA-M Model	83
General Security Considerations	83
Maintenance/ Warranty / Conformity Declaration / Recycling	84
Output Options	85
Dimensions and Mounting	86
Power Supply and Wiring	87
Panel Functions Description	88
Programming Instructions	89
Input Configuration	90
Process Input Range Programming	91
Process Input Wiring	92
Load Cell Input Programming	93
Load Cell Input Wiring	94
Pt100 and Thermocouple Programming	94
Pt100 Sensor Wiring	95
Thermocouple Input programming	96
Thermocouple Sensor Wiring	97
Potentiometer Programming and Wiring	
Display Programming	99
Integrator	105
Display Options	
Volume Calculations	109
Keyboard Functions	112
Remote Functions	113
Lock Out Programming	115
New Functions of the Relay Module	117
TARE Mode	118
"SENSOR BREAK" and "FAIL SAFE" Function	
"R.O.C" and "DOSE" Function	
Technical Specifications	
ANNEX 1	
List of Commands (ASCII, ISO1745, MODBUS RTU)	
Adress of the variables in the memory (MODBUS RTU)	

GENERAL INFORMATION

This manual is not a contract or commitment on the part of Diseños y Tecnología, S.A. All information contained in this document is subject to change without notice.

Introduction to the BETA-M

This BETA-M model from the KOSMOS series incorporates new technical and functional features. New filters, programming lock by software, programmable logic functions and direct access to the programming of setpoint values.

The BETA-M model of the KOSMOS SERIES is a multifunction digital indicator that allows the user to configure the input stage to be used with the following types:

- PROCESS INPUT (V, mA)
 LOAD CELL INPUT (mV/V)
 Pt100 PROBE INPUT
- THERMOCOUPLE INPUT (J, K, T, R, S, E)

- POTENTIOMETER INPUT

This configuration is done entirely by software, without the need to change any card since the input option allows the direct connection of any of the transducers, transmitters or primary elements. It has an 8-digit totalizer/integrator that allows to accumulate quantities as a totalizer + batch counter or to integrate the measurement using a time base to read the cost per cycle, per day, etc.

The functions of the basic instrument include the display of the input variable, reading and memorization of maximum and minimum values (peak/valley), tare and reset function, as well as four logic inputs with programmable functions (up to 36) for remote control.

It allows the partial or total blocking of the programming parameters by means of a four-digit security code as well as the possibility of returning to the factory settings.

The BETA-M model instruments can also incorporate various options of analog or digital control outputs (by relays or optos) and communication in parallel BCD or serial RS232C or RS485 format.

All outputs are optoisolated from the input signal and from the general power supply.

The basic instrument is a welded assembly made up of the motherboard, the display, the power supply filter and the multi-input option that are housed in their corresponding connectors.

General security considerations

All indications and instructions for installation and handling that appear in this manual must be taken into account to guarantee personal safety and prevent damage to this equipment or to the equipment that may be connected to it.

The safety of any system incorporated into this equipment is the responsibility of the system assembler.

If the equipment is used in a manner different from that intended by the manufacturer in this manual, the protection provided by the equipment may be compromised.

Symbol identification

ATTENTION: Possibility of danger.

Read the related instructions completely when this symbol appears in order to know the nature of the potential danger and the actions to take to avoid it.

ATTENTION: Possibility of electric shock

Equipment protected by double insulation or reinforced insulation

MAINTENANCE

To guarantee the precision of the instrument, it is advisable to verify its compliance in accordance with the technical specifications contained in this manual, performing calibrations at regular periods of time that will be set according to the criteria of use of each application.

The calibration or adjustment of the instrument must be carried out by an Accredited Laboratory or directly by the Manufacturer.

The repair of the equipment must be carried out only by the manufacturer or by personnel authorized by it.

To clean the front of the equipment, simply rub it with a cloth soaked in neutral soapy water. **DO NOT USE SOLVENTS!**

WARRANTY

The instruments are warranted against defective materials and workmanship for a period of FIVE years from date of delivery.

If a product appears to have a defect or fails during the normal use within the warranty period, please contact the distributor from which you purchased the product.

This warranty does not apply to defects resulting from action of the buyer such as mishandling or improper interfacing.

The liability under this warranty shall extend only to the repair of the instrument. No responsibility is assumed by the manufacturer for any damage which may result from its use.

Conformity declaration

CE

To obtain the declaration of conformity corresponding to this model, please access our website **www.ditel.es**, where this document as well as the technical manual and other information of interest can be freely downloaded.

INSTRUCTIONS FOR THE RECYCLING

This electronic instrument is covered by the **2002/96/CE** European Directive so, it is properly marked with the crossed-out wheeled bin symbol that makes reference to the selective collection for electrical and electronic equipment which indicates that at the end of its lifetime, the final user cannot dispose of it as unsorted municipal waste.

In order to protect the environment and in agreement with the European legislation regarding waste of electrical and electronic equipments from products put on the market after 13 August 2005, the user can give it back, without any cost, to the place where it was acquired to proceed to its controlled treatment and recycling.

PACKAGE CONTENTS

- Product Quick Start
- D.P.M model **BETA-M**.
- Accessories for panel mounting (sealing gasket and fastening clips).
- Accessories for wiring connections (removable plug-in connectors and fingertip).
- Wiring label stuck to the **BETA-M** case.
- Two sets of engineering units labels.

Power supply

Instruments supplied for 115 / 230 V AC power are factory set for 230 V AC (USA market 115 V AC). Instruments supplied for 24 / 48 V AC power are factory set for 24 V AC.

⇒ Check the wiring label before power connection

Programming instructions

The software is divided into several independently accessible modules to configure the input, the display, the setpoints, the analogical output, the output communication and logic inputs.

Input type (Pág. 90 to 99)

⇒ Check the correct configuration of the expected signal before connecting the input.

Programming lock

The instrument is supplied with unlocked programming, giving access to all programming levels. The blocking is carried out by software through a security code that can be personalized.

OUTPUT OPTIONS

The **2RE**, **4RE**, **4OP** and **4OP**P options are alternatives and only one of them can be mounted.

The **RS2**, **RS4** options are also alternatives and only one of them can be mounted.

The **BCD** option excludes any other output option.

Up to 3 output options can be present and operate simultaneously: (except BCD)

- ANA (ANALOG OUTPUT 4-20mA or 0-10V)
- RS232C, RS485 (only one)
- 2 RELAYS, 4 RELAYS or 4 OPTIONS (only one).

For more information on characteristics, applications, assembly and programming, refer to the specific manual supplied with each option.

DIMENSIONS AND MOUNTING

To install the instrument into the panel, make a 92×45 mm cut-out and insert the instrument into the panel from the front, placing the sealing gasket between this and the front bezel.

Place the fixing clips on both sides of the case and slide them over the guide tracks until they touch the panel at the rear side.

Press slightly to fasten the bezel to the panel and secure the clips.

To take the instrument out of the panel, pull outwards the rear tabs of the fixing clips to disengage and slide them back over the case.

CLEANING: The frontal cover should be cleaned only with a soft cloth soaked in neutral soap product. DO NOT USE SOLVENTS

POWER SUPPLY AND WIRING

Should any hardware modification be performed, remove the electronics from the case as shown.

115/230 V AC: The instruments with 115/230 V AC power, are shipped from the factory for 230 V AC (USA market 115 V AC). To change supply voltage to 115 V AC, set jumpers as indicated in table 1. The wiring label should be modified to match new setups.

24/48 V AC: The instruments with 24/48 V AC power supply, are shipped from the factory for 24 V AC, see figure 9.3 To change supply voltage to 48 V AC, set jumpers as indicated in table 1. The wiring label should be modified to match new setups.

Pin	1	2	3	4	5
230V AC	-				
115V AC					-
48V AC	-				
24V AC					-

Table 1. Jumper settings.

Supply voltaje 115 V AC (BETA-M) 24 V AC (BETA-M2)

INSTALLATION

To meet the requirements of the directive EN61010-1, where the unit is permanently connected to the mains supply it is obligatory to install a circuit breaking device easily reachable by the operator and clearly marked as the disconnect device. WAŔNING

In order to guarantee electromagnetic compatibility, the following guidelines for cable wiring must be followed:

- Power supply wires must be routed separated from signal wires. Never run
- power and signal wires in the same conduit. Use shielded cable for signal wiring and connect the shield to ground of the indicator (pin2 CN1).
- The cable section must be $\geq 0.25 \text{ mm}^2$

If not installed and used according to these instructions, protection against hazards may be impaired.

CONNECTORS

To perform wiring connections, remove the terminal block from the meter's connector, strip the wire leaving from 7 to 10 mm exposed and insert it into the proper terminal while pushing the fingertip down to open the clip inside the connector as indicated in the figure. Proceed in the same manner with all pins and plug the terminal block into the corresponding meter's connector. Each terminal can admit cables of section comprised between 0.08 mm² and 2.5 mm² (AWG 26 \div 14). The blocks provide removable adaptors into each terminal to allow proper fastening for cable sections of <0.5 mm².

BETA-M/M2

FRONT-PANEL FUNCTIONS IN RUN MODE

FRONT-PANEL FUNCTIONS IN PROG MODE

 $\begin{bmatrix} 1 \end{bmatrix}$

2

[]3 4

STIPNE

DATA

MAX/MIN

(×

[]

HOLD

TARE

TAR

PROGRAMMING INSTRUCTIONS

Access to the programming mode

When power is applied to the instrument, the display briefly illuminates all segments and LED's then shows the software version and finally enters in the nor-

mal mode. Press **ENTER** to enter in the programming mode. The second display shows the indication "-Pro-"

Exit from the programming mode without saving data

From any step of the program routines, a push of shows mo-mentarily the indication "qUIt" on the second display, the meter exits from the programming mode, restores the previous configuration and returns to the normal operation. Any parameter change made before exiting in this mode is discarded.

Save changes in the configuration

In the programming mode, the instrument returns to the -Pro- stage at the end of each program menu. The data chang-

es are not saved at this point, to keep changes in the configuration parameters press entry, the second display shows momentarily the indication "StorE" while the new configuration is saved in the memory. After, the instrument returns to the run mode.

Guidelines on programming instructions

The programming software is divided into 6 modules. Each module is organized in several independently accessible menus and each menu contains a list of parameters necessary to configure a specific function of the meter.

From the -Pro- stage, press repeatedly \checkmark to cycle around the existing modules: module 10 = Input configuration, module 20 = display configuration, module 30 (if option is installed) = setpoints, module 40 (if option is installed) = ana-

log output, module 50 (if option is installed) = serial outputs and module 60 = logic functions. Press to get access to the selected module.

and buttons.

INPUT CONFIGURATION

The figure shows the complete input configuration module which is divided into five menus. Each menu corresponds to a specific configuration of the meter. You may only need to program the parameters of the desired configuration (process, load cell, thermocouple, Pt100 or potentiometer).

KOSMOS SERIE

PROCESS INPUT RANGE PROGRAMMING

To have access to the input configuration module, press ENTER to pass from the

run mode to the programming mode and press \checkmark to make the lower displays show the indication "10 CnFInP"

Program process input

The process indicator accepts inputs in volts or milliamperes and provides three selectable transducer excitation voltages.

Configurable parameters: Type of input : volts or milliamperes

Input range in volts or milliamperes : "1V", range -1V to +1V, "10V", range -10V to +10V,

> "1mA", range -1mA to +1mA, "20mA", range -20mA to +20mA,

Sensor excitation. Available excitation voltages are 24V, 10V or 5V. The 5V supply is set by selecting 10V in the software routines then placing a jumper in the position shown in figure

BETA-M/M2

Menu 11 - PROCESS

The figure shows the indication corresponding to the access stage to process input configuration. The following actions are available at this stage :

Access to the process input parameters.

Skip this menu and pass to the load cell configuration.

Exit from this routine and return to the -Pro- stage.

Menu 11 Input. Select input type.

The display shows the previous configuration [VoLt = voltage input, AMP = cur-

rent input]. Press 🔶 to change this parameter if desired.

ENTER Validate the choice and advance to the next programming step.

Exit from this routine and return to the -Pro- stage.

Menu 11 rAnGE. Select input range.

There are two ranges for each input type [**1-V** / **10-V** if input type is 'VoLt' and **1mA** / **20mA** if input type is 'AMP']. Press \checkmark to change this parameter if desired.

ENTER Validate changes and advance to the next programming step.

ESC

Exit from this routine and return to the -Pro- stage.

Menu 11 SuPPLY. Select excitation voltage.

The meter provides two software selectable excitation voltages [**10-V** and **24-V**] that alternate on the display by pressing the key. To set the excitation supply to 5V DC, select the option '10-V' and place the jumper shown in figure.

Validate changes, exit from this menu and return to the -Pro- stage.

Exit from this routine and return to the -Pro- stage.

PROCESS INPUT WIRING

Transducer Wiring (V, mA)

EXCITATION SUPPLIED BY BETA

+ IN (V)

			4 wire connection
CN3	- EXC	- EXC	TRANSDUCER
	+ EXC	+ EXC	0-1mA
	+ IN (mA)	+ OUT	0-5mA 0-20mA
	-IN (mA)	-OUT	4 - 20mA

+ OUT

1-5V

3 wire connection TRANSDUCER + EXC 0-1mA 0-5mA COMM 0-20mA + OUT 4-20mA

LOAD CELL PROGRAMMING

Program load cell input

Refer to the cell manufacturer's documentation, particularly with respect to the cell sensitivity and supply voltage specifications.

As load cell indicator the meter's function is to measure forces (weight, pressure, torque...) which are converted to a millivolts signal by a bridge type transducer such as load cell and applied to the input of the meter. The instrument supplies 10V or 5V to feed the transducer as selected by jumper. These voltages can feed up to 4 cells connected in parallel with 10V or up to 8 cells connected in parallel with 5V without need for an external source.

Example:

4 cells with 2mV/V sensitivity are parallel connected to the meter input. With an excitation voltage of 10V, the max. voltage generated by the cells is 20mV. In the same case but with an excitation of 5V, the max. voltage generated by the cells is 10mV.

Software configuration requires selection of the input range which may be selected high enough for the maximum input signal to avoid overloads.

There are four ranges: ±15mV, ±30mV, ±60mV and ±300mV

Example:

If a weighing process gives 20mV to the meter input with maximum load, the best range should be 30mV.

BATCH FUNCTION

Operation by logic input

Function n^o 30 -BATCH- is designed to be used in batch weighing applications where it is required to read the accumulated total of a product quantity per cycle, or day and to keep count of the number of weighing operations.

A sensor connected to a logic input with function 30 detects the presence of a weight and pulls low the logic input which makes the instrument add the measured value to the totalizer and increment the batch counter in one unit.

The meter keeps in memory the totalizer and the batch count in a power failure or disconnection from the power source.

These parameters can be displayed permanently on the second display as selected by the user.

Menu 12 - LOAD CELL

Thr figure shows the indication corresponding to the input level **to load cell input** configuration. The following actions are available at this stage:

ENTER Access to the load cell input parameters.

Skip this menu and pass to the Pt100 configuration.

Exit from this routine and return to the -Pro- stage.

Menu 12 rAnGE. Select input range.

Press repeatedly the key to cycle around available options [**300mV**, **60mV**, **30mV** and **15mV**].

ENTER Validate changes, exit from this menu and return to the -Pro- stage.

Exit from this routine and return to the -Pro- stage.

LOAD CELL INPUT WIRING

PIN 6 = -EXC [excitation supply (-)] PIN 5 = +EXC [excitation supply (+)] PIN 4 = Not connected PIN 3 = -mV [input signal mV (-)] PIN 2 = Not connected PIN 1 = +mV [input signal mV (+)]

Load Cell Wiring (mV/ V)

Refer to wiring instructions in page 87.

PT100 AND THERMOCOUPLE PROGRAMMING

Program Pt100 input

Please refer to your sensor documentation.

When configuring the meter for Pt100 input, the temperature ranges are set automatically depending on temperature units and resolution:

Input	Range (0.1 °)	Range (1°)	
Pt100	-100.0 to +800.0 °C	-100 to +800 °C	
	-148.0 to +1472.0 °F	-148 to +1472 °F	

The Pt100 software menu allows selection of temperature units (Celsius or Fahrenheit), resolution (degrees or tenths of degree) and a display offset. The offset may be used to compensate for a difference that may exist between the temperature under measurement and the temperature read by the sensor. The offset is programmable from -9.9 to +9.9 with 0.1° resolution and from -99 to +99 whith 1° resolution.

Example:

The instrument is used to control the temperature of a baking oven, but the sensor is located at a distance from the oven where the temperature is 2 degrees below. To correct from this deviation, the offset should be programmed to +2 counts (with 1° resolution).

Configurable parameters for this input are:

- Reading units in Celsius "^oC" or Fahrenheit "^oF".
- Resolution to units "1°" or tenths "0.1°".
- Offset. Programmable ±99° counts.

After entering these parameters, the display range and linearization are adjusted automatically.

Menu 13 - THERMOMETER FOR Pt100 SENSOR

The figure shows the indication corresponding to the access level to Pt100 input configuration. The following actions are available at this stage:

- ENTER Access to the Pt100 input parameters.
- \bigcirc

Skip this menu and pass to the Pot input menu. ESC Exit from this routine and return to the -Pro- stage.

Menu 13 -Pt100. Select temperature units.

Use \checkmark to select desired units ["**°C**" = Celsius, "**°F**" = Fahrenheit].

ENTER Validate changes and pass to the next program step.

ESC Exit from this routine and return to the "-Pro-" stage.

Menu 13 -Pt100. Select resolution.

Press to switch between the indications "**0.1**°" (resolution to tenths of degree) and "**1**°" (resolution to degrees).

ENTER Validate changes and pass to the next program step.

Menu 13 oFFSEt. Program the display offset.

The previously programmed offset appears on the display with the first digit in flash.

To change the value, press local to increment the active digit value (the first

digit can only be '0' or a minus sign). Press \checkmark to shift to the next digit to be modified and repeat these operations until desired offset is completed on the display (max values are ±99° with 1° resolution and ±9.9° with 0.1° resolution. The TARE LED lights whenever the offset has been set to a value other than zero.

ENTER Validate changes and return to the -Pro- stage.

Exit from this routine and return to the "-Pro-" stage.

Resolution 0,1°: ... Offset ±9,9° Resolution 1°: Offset ±99°

PT100 INPUT WIRING

ESC

PIN 6 = Not connectedPIN 5 = Pt100 COMM

- PIN 4 = Not connected
- PIN 3 = Pt100
- PIN 2 = Not connected
- PIN 1 = Pt100

Input wiring schematic for Pt100 sensor with 3 wires.

Refer to wiring instructions in page 87.

Program thermocouple input

When configuring the meter for thermocouple input, the temperature ranges are set automatically according to sensor type, temperature units and resolution:

Input	Range (res. 0,1 °)	Range (res. 1°)	
TC "J″	-200,0 to +1100,0 °C	-200 to +1100 °C	
	-328,0 to +2012,0 °F	-328 to +2012 °F	
тс "к"	-200,0 to +1200,0 °C	-200 to +1200 °C	
	-328,0 to +2192,0 °F	-328 to +2192 °F	
TC "T″	-150,0 to +400,0 °C	-150 to +400 °C	
	-238,0 to +752,0 °F	-238 to +752 °F	
TC "R″	-50,0 to +1750,0 °C	-50 toa +1750 °C	
	-58,0 to +3182,0 °F	-58 to +3182 °F	
TC "S"	-50,0 to +1750,0 °C	-50 to +1750 °C	
	-58,0 to +3182,0 °F	-58 to +3182 °F	
TC "E″	-200,0 to +1000,0 °C	-200 to +1000 °C	
	-328,0 to +1832,0 °F	-328 to +1832 °F	

The thermocouple software menu allows selection among several types of thermocouple, temperature units (Celsius or Fahrenheit), resolution (degrees or tenths of degree) and a display offset. The offset may be used to compensate for a difference that may exist between the temperature under measurement and the temperature read by the sensor.

The offset is programmable from -9.9 to +9.9 with 0.1° resolution and from -99 to +99 whith 1° resolution.

Example:

The instrument is used to control the temperature of a baking oven, but the sensor is located at a distance from the oven where the temperature is 2 degrees below. To correct from this deviation, the offset should be programmed to -2 counts (with resolution of 1°).

Configurable parameters for this input are:

- Thermocouple type [J, K, T, R, S, E].
- Reading units in Celsius "°C" or Fahrenheit "°F".
- Resolution to units "1°" or tenths "0.1°".
- Offset. Programmable ±99° counts.

djusted

After entering these parameters, the display range and linearization for the selected thermocouple input are adjusted automatically.

Menu 14 - THERMOCOUPLE METER

The figure shows the indication "-tc-" corresponding to the **thermocouple input** selection. Press one of the following keys:

Press one of the following keys:

Access to the thermocouple input configuration menu.

Pass to the menu 15 - Potentiometer.

Exit from this menu and go to the "-Pro-" stage.

Menu 14 -tc-. Select thermocouple type.

Press **b** to shift around available inputs ['tYPE-J', 'tYPE-K', 'tYPE-t', ' tYPE-r', 'tYPE-S' or 'tYPE-E'].

ENTER Validate changes and advance to the next program step.

Exit this routine and return to the "-Pro-" stage.

Menu 14 -tc-. Select temperature units.

Use to select desired units ["**°C**" = Celsius, "**°F**" = Fahrenheit]. ^(ENTER) Validate changes and pass to the next program step. ^(ESC) Exit from this routine and return to the "-Pro-" stage.

ESC

ESC

ESC

BETA-M/M2

Menu 14 -tc-. Select resolution.

Press \checkmark to switch between the indications "**0.1**°" (resolution to tenths of degree) and "**1**°" (resolution to degrees).

ENTER Validate changes and advance to the next program step.

Exit from this routine and return to the "-Pro-" stage.

Menu 14 oFFSEt. Program the display offset.

The previously programmed offset appears on the display with the first digit in flash.

To change the value, press local to increment the active digit value (the first

digit can only be '0' or a minus sign). Press \checkmark to shift to the next digit to be modified and repeat these operations until desired offset is completed on the display (max values are ±99° with 1° resolution and ±9.9° with 0.1 ° resolutions.

The TARE LED lights whenever the offset has been set to a value other than zero.

Validate changes and return to the "-Pro-" stage.

Exit from this routine and return to the "-Pro-" stage.

THERMOCOUPLE SENSOR WIRING

PIN 6 = Not connected PIN 5 = Not connected PIN 4 = Not connected PIN 3 = - TC PIN 2 = Not connected PIN 1 = + TC Signal wiring schematic for Thermocouples J, K, T, R, S and E with 2 wires

[]

:0

Refer to wiring instructions in page 87.

POTENTIOMETER INPUT PROGRAMMING

When the instrument is configured as a displacement indicator, it is not necessary to enter any parameters. The excitation is automatically selected, being able to be 10V or 5V, depending on the position of the internal excitation jumper (see figure on page 91).

This voltage is used to drive the potentiometer so that the level of the input signal varies according to the position of the cursor.

Menu 15 - POTENTIOMETER

The figure shows the indication "**-Pot-**" corresponding to the configuration of the potentiometer input. Press one of the following keys:

ENTER Validate the configuration of the potentiometer input and exit at the beginning of the programming "-Pro-".

Go to Submenu 11 - Process

Cancel the programming and return to the "-Pro-" stage.

POTENTIOMETER WIRING

PIN 6 = - EXC

- PIN 5 = POT HI
- PIN 4 = Not connected
- PIN 3 = POT LO (COMM)
- PIN 2 = POT CENTRAL
- PIN 1 = Not connected

Signal wiring schematic for potentiometer with 3 wires

Ĩ

:

15

TARE

- P

ot

Refer to wiring instructions in page 87.

01

02 03 04

DISPLAY PROGRAMMING

ENGLISH

DISPLAY PROGRAMMING

Scaling

When the instrument is configured as a process, load cell or potentiometer indicator, the display must be scaled to fit a particular application. Scaling the display consists of assigning a display value to every input value.

For linear processes this is accomplished by programming two points -(input1,display1) and (input2,display2)-. The line plotted between these points establishes a linear relationship in which any input value produces a unique display value.

Reverse operation is accomplished by reversing the display values or the input values (see figure).

The two points should be located near the process limits for the best possible accuracy.

For non-linear processes it is possible to set up to 30 pairs input-display.

Each two consecutive points are linked by a straigh segment forming all together a curve that represents a non-linear relationship between input and display.

The greater the number of points used, the more accurate the measurement will be.

7) The input values must be programmed in always increasing or always decreasing order. Two different display values should not be assigned to the same input value.

The display values can be programmed in any order. The same display value can be assigned to different input values.

For input values below the first programmed point, the display follows the slope calculated between points 1 and 2 of the scale. For input values over the last programmed point, the display follows the slope calculated between the last two points of the scale.

The meter offers two methods to scale the display; **SCAL** (menu 21) and **tEACH** (menu 22). The diagram represents the program routine for the SCAL menu, but both routines are the same except that in the tEACH menu, the input values are denoted by tCH in the second display.

SCAL method

The input and display values are programmed manually by the front-panel keys. This method can be used when the transducer gives accurate calibrated known signals for each point of the process.

tEACH method

The input values are taken from the actual input signal present at the input connector at each point and the corresponding display values are programmed manually.

This method is suitable when the transducer is connected to the process and the process can be brought to the desired conditions while programming.

Linearization points

The first two scaling points are accessible by entering in the proper scaling menu with the ENTER key. The accesses to program scaling points above 2 is achieved by a press of 3 seconds after programming the parameter 'dSP-02' in the SCAL or tEACH menus. The subsequent input-display pairs follow one another by successive pressings of ENTER. When sufficient numbers of points have been programmed, the user can exit from the routine and save the programmed data by a press of 3 seconds from the display value of the last point. In normal operation, the nonprogrammed pairs are missed out from the display calculation.

BETA-M/M2

Menu 21 - SCAL (process, load cell and potentiometer)

This menu allows entering the input values and corresponding display values necessary to scale the meter. The decimal point location helps to read the indication in the desired units.

The figure shows the indication corresponding to the access level to the SCAL

menu. Press one of the following keys:

 \frown Skip this menu and pass to menu 22 - Teach.

ESC Exit this menu and return to the -Pro- stage.

Menu 21 InP-01. Program input value for point 1.

The previously programmed value appears on the display with the first digit blinking.

Press repeatedly the 🔺 key to increment the active digit until it takes desired

value (first digit can only be '0' or a minus sign). Press 🕑 to move to the next digit to be modified and repeat these operations until desired value is completed on the display.

ENTER ESC

Validate changes and go to the next step.

Cancel this routine and return to the -Pro- stage.

Menu 21 dSP-01. Program display value for point 1.

Use the procedure described on previous step (\checkmark changes value, \checkmark changes digit) to program the display value for point 1.

Validate changes and go to the next step.

Cancel this routine and return to the -Pro- stage.

Menu 21 dECP. Decimal point position.

At this step, the decimal point goes in flash. Press the \checkmark key to rotate it to the right until it gets desired position. If no decimal point is required, it must be located to the rightmost digit as shown in figure 39.1.

ENTER

ESC Cancel this routine and return to the -Pro- stage.

Menu 21 InP-02. Program input value for point 2.

Use the \checkmark (change value) and \checkmark (change digit) procedure to program the desired value of input 2 with sign.

ENTER Validate the entry and proceeed to the next phase.

Menu 21 dSP-02. Program display value for point 2.

Use the (change value) and (change digit) procedure to program the desired value of display 2 with sign. If you want to accept your changes and exit from the scaling routine with 2 points, press

If you want to enter in the linearization routine press and hold *enter* for 3 seconds.

Cancel this routine and return to the -Pro- stage.

ESC

102

ESC Return to the programming of the previous point.

"dSP-30". Programming the display of point 30.

Use the (increment digit) and (move to next digit) procedure to set the value of the display 30 with sign. The most significant digit is used to set the sign ["0" = positive, "-" = negative].

ENTER Validate the entry, exit from this routine and go to the "-Pro-" stage.

Return to the previous point.

stage.

The same procedure is used to program the rest of the input-display points except that the kev does not return to the "-Pro-" stage, but to the previous point.

From the programming phase of the display 2, press and hold FIFER for 3 seconds to get access to the linearization routine. From the point n°3, the progress through the routine is made by pressing the Key after programming

At any program step, a press of reverts to the previous point except for the programming phase of point 3,

To terminate the routine for a number of points less than 30, press and hold **ENTER** for 3 seconds from the last de-

A push of *from the programming of the display no29 gives access to the programming of the scaling point*

The programming routine is terminated by a press of entermatter after programming the display 30.

"InP-30". Programming the input of point 30.

Press repeatedly the key to increment the active digit value and press the

Validate the entry and advance to the next program step.

Use the \checkmark (change value) and \checkmark (change digit) procedure to program the desired value of input 2 with sign.

ENTER Validate the entry and proceeed to the next phase.

Menu 21 InP-03. Program input value for point 3.

where the $\stackrel{\blacksquare}{\blacksquare}$ kev returns the meter to the -Pro- stage.

ESC Cancel this routine and return to the "-Pro-" stage.

Menu 21 dSP-03. Program display value for point 3.

Press repeatedly the *key* to increment the active digit value and press the

key to move to the next digit until the display reads the desired value with sign. The sign is programmed in the most significant digit ["0" = positive, "-" = negative1.

1. If you want to validate the data and advance to the next program, press 2. If you want to validate the data and terminate the programming routine with

three scaling points, press and hold enter for 3 seconds. The meter goes to the "-Pro-" stage.

ESC if you want to cancel the programming and return to the "-Pro-" Press

 $n^{o}30$ and last of the routine. The $\stackrel{\blacksquare}{\blacksquare}$ key reverts to the previous point.

key to move to the next digit until the display reads the desired value with sign. The sign is programmed in the most significant digit ["0" = positive, "-" = negative]. ENTER

BETA-M/M

each value.

sired point display.

ESC

www.ditel.es

2 d 5 P

2

Menu 22 - TEACH (process, load cell and potentiometer)

This menu allows scaling the display by applying input signal values and keying-in corresponding display values. The decimal point location completes the scaling sequence in the desired units.

The figure shows the indication corresponding to the access level to the **tEACH** menu. Press one of the following keys:

Access to the programming of the first menu parameter.

 \bigcirc Skip this menu and pass to menu 23 - Display options.

ESC Exit this menu and return to the -Pro- stage.

Menu 22 tCH-01. Apply input for point 1. The main display reads the actual input signal present at the input connector. Bring the process to the conditions of the first point and press to take the displayed input value as the input 1 parameter and go to the programming of the corresponding display.

ESC Cancel this routine and return to the -Pro- stage.

Menu 22 dSP-01. Program display value for point 1.

Use the key-in procedure to set the display corresponding to point 1 (

changes the active digit value, moves to the next digit to be modified). The sign is programmed in the leftmost digit ["0" = positive, "-" = negative].

ENTER Validate changes and go to the next programming phase.

ESC Cancel this routine and return to the -Pro- stage.

Menu 22 dECP. Decimal point position.

At this step, the decimal point goes in flash. Press the 💛 key to move it to the right until it gets desired position. If no decimal point is required, it must be located to the rightmost digit as shown in figure.

Validate the entry and go to the next step.

Cancel this routine and return to the -Pro- stage.

Menu 22 tCH-02. Set input value for point 2.

Bring the process to the conditions of the second scaling point. The main display

reads the actual input signal present at the input connector. Press **ENTER** to take the displayed input value as the input 2 parameter and go to the programming of the corresponding display. ESC

Cancel this routine and return to the -Pro- stage.

Menu 22 dSP-02. Program display value for point 2.

Use the (change value) and (change digit) procedure to program the desired value of display 2 with sign. If you want to accept your changes and exit from the scaling routine with 2

points, press

If you want to enter the linearization routine press and hold for 3 seconds. ESC

Cancel this routine and return to the -Pro- stage.

From the programming phase of the display 2, press and hold for 3 seconds to get access to the linearization

routine. From the point n°3, the progress through the routine is made by pressing the Key after programming each value.

At any program step, a press of reverts to the previous point except for the programming phase of point 3,

where the $\stackrel{\text{\tiny ESC}}{\longrightarrow}$ key returns the meter to the -Pro- stage.

To terminate the routine for a number of points less than 30, press and hold for 3 seconds from the last desired point display.

Menu 22 tCH-03. Apply input for point 3. The main display reads the actual input signal present at the input connector. Press **EXTER** to take the displayed input value as the input 3 parameter and go to the programming of the corresponding display.

ESC Cancel this routine and return to the -Pro- stage.

Menu 22 dSP-03. Program display value for point 3.

Press repeatedly the \checkmark key to increment the active digit value and press the

key to move to the next digit until the display reads the desired value with sign. The sign is programmed in the most significant digit ["0" = positive, "-" = negative].

1. If you want to validate the data and advance to the next point, press 2. If you want to validate the data and terminate the programming routine with

three scaling points, press and hold FITER for 3 seconds. The meter goes to the "-Pro-" stage.

Press if you want to cancel the programming and return to the "-Pro-" stage.

The same procedure is used to program the rest of the input-display points except that the second key does not return to the "-Pro-" stage, but to the previous point.

A push of From the programming of the display n°29 gives access to the programming of the scaling point $n^{\circ}30$ and last of the routine. The $\stackrel{\blacksquare}{\blacksquare}$ key reverts to the previous point.

www.ditel.es

The programming routine is terminated by a push of $\stackrel{\text{\tiny ENTER}}{=}$ after programming the display 30.

Menu 22 tCH-30. Set input value for point 30.

Bring the process to the conditions of the second scaling point. The main display reads the actual input signal present at the input connector.

Press **ENTER** to take the displayed input value as the input 3 parameter and go to the programming of the corresponding display. ESC

Cancel this routine and return to the -Pro- stage.

"dSP-30". Programming the display of point 30.

Use the (increment digit) and (move to next digit) procedure to set the value of the display 30 with sign. The most significant digit is used to set the sign ["0" = positive, "-" = negative].

ENTER Validate the entry, exit from this routine and go to the "-Pro-" stage. ESC

Return to the previous point.

BETA-M/M

Integrator

The instrument provides an 8 digit counter (or 7 digits with negative sign) that can be used to accumulate readings in totalizing+batch applications (logic function n^{o} 30 at the rear connector) or to integrate the instantaneous reading using a timebase.

The counter is shown on the second display.

The integrator is enabled by setting the option **-on**in the menu **23 IntEG**. When activated, the logic function n^o 30 is inhibited.

(NOTE: It is not possible to activate the integrator when the automatic volume calculation option is programmed.

The value of the integrator appears on the auxiliary display permanently. This allows the instantaneous measurement and the accumulated total be read at the same time. The second display may show any other variable or be blanked if desired.

The integrator accumulates the reading of the display using a timebase in the following format:

Total(n) = Total(n-1) + $\frac{\text{Display Reading x Scale Factor}}{\text{Time Base}}$

As an application example, it is required to show the total fluid quantity that pours out from a drain at a rate of 10 liters per minute. If the instantaneous value is 10.00 and is expressed in lit/min, we must select the timebase in minutes, so the totalizer may show 10.00 lit after one minute, 20.00 lit in two minutes, 600.00 lit in one hour, etc.

To read the daily consumption in m³, for instance, we should program a scale factor of 0,001 (1 lit=0,001 m³).

Menu 23 - INTEGRATOR (for process and potentiometer)

This menu allows enabling the integrator option and configuring the function parameters; time base, decimal point, scaling factor and low-cut display.

This menu appears only in process and potentiometer configurations.

The figure shows the indication **"-IntEG**" corresponding to the input stage of the integrator configuration menu.

To access the integrator configuration.

To skip this menu and pass to the next menu.

To cancel this routine and return to the "-Pro-" stage.

The first level of this menu offers two choices -on- and -oFF- to enable or disa-

ble the integrator respectively. Press the key to switch the display be-tween the two options to set the desired one. If the "automatic volume calculation" option is enabled (menu 27 -VoL-) it is not

possible to activate the integrator.

Validate the choice and go to the next program phase.

Cancel this routine and return to the "-Pro-" stage.

23 tbASE. Programming the time base. There are four time bases: -S- seconds, -M- minutes, -H- hours and -d- days.

Use \checkmark to shift around the available options until the display shows the indication corresponding to the desired time base.

ESC

ESC

Cancel this routine and return to the "-Pro-" stage.

The **totalizer decimal point** is programmed in the second display and can be located in any of its 8 digits. In this step, the main display shows the indication "dP" and the second display shows the decimal point in flash. Press repeatedly

the key to move it to the desired location. If no decimal point is re-quired, it must be placed to the right of the least significant digit.

ENTER Validate the choice and go to the next program phase.

ESC Cancel this routine and return to the "-Pro-" stage.

"23 FACt". Programming the scale factor.

Press repeatedly the \checkmark key to increment the active digit and press the

key to move to the next digit to the right until the desired scale factor

value is completed on the display. A press of to validate the entry makes the decimal point go in flash. The factor decimal point position is independent from the one of the display, so it is possible to program any value within the range 0.0001 to 09999. It is not possible to set the scale factor to 0.

"Low-Cut" is the value below which the display is not added to the totalizer. Press repeatedly the \checkmark key to increment the active digit and press the

key to move to the next digit to be modified until desired value is com-pleted on the display. The leftmost digit is used to set the sign ["0" = positive, "-

Validate the entry, exit from this routine and go to the "-Pro-" stage.

ENTER Validate the entry and go to the next program phase.

Cancel this routine and return to the "-Pro-" stage.

ESC Cancel this routine and return to the "-Pro-" stage.

= negative].

ENTER

DISPLAY OPTIONS

The instrument has several types of digital filtering to provide stable readings according to the nature of the input.

The **P filter** is a programmable low pass filter that smooths the response of the display to input variations. The **E filter** cuts off the signal variations exceeding from the limits of a band. When the input stabilizes, the band moves to the new value.

The **Average filter** averages the reading over a programmable number of conversions to be displayed at the selected rate.

The **round filtern** allows eliminating display jitter by rounding off the meter display by increments of 1, 2, 5, 10, 20, 50 or 100 counts.

In addition, the instrument offers various options so that the user can adjust the reading of the display to meet the system environment conditions, such as selection of two display intensity levels, non-significant zeros (left zeros) and three display update rates.

This menu allows configuring various options related to the display visualization; the digit brightness, left zeros and display update rate.

Menu 24 - DISPLAY OPTIONS

The figure shows the indication "**-dSP-**" corresponding to the entry level to display options menu. The following actions are available at this stage:

Chin this many and pass to the filtering actus me

ESC

Skip this menu and pass to the filtering setup menu.

Exit from this routine and return to the -Pro- stage.

Menu 23 brIGHt. Select digit brightness.

Use the key to change the display brightness (current choice is noticed each time it is changed). Select "**-HI-**" or "**-LO-**" as desired and:

Validate the choice and go to the next step.

Cancel this routine and return to the -Pro- stage.

DITEL

Menu 23 LFt-0. Select non-significant zeros. There are two options. Select "-YES-" to read the measured value with all the digits of the display by adding left zeros or select "-NO-" to blank non-significant digits.

ENTER Validate the choice and go to the next step.

ESC Cancel this routine and return to the -Pro- stage.

Menu 23 -rAtE-. Select reading rate.

The reading rate determines the rate at which the display is updated. This parameter affects the display, the setpoints, the analog output and the BCD output.

Available values are 18, 4 and 1 per second. Press \checkmark to select desired rate. Lower levels produce slower display responses to signal changes. The 16 read-ings/s option will update the display at the rythm of the signal conversion. For temperature configurations the effective rate is half the selected number of readings/s.

Validate the choice and return to the "-Pro-" stage.

ESC Cancel the programming and go to the "-Pro-" stage.

BETA-M/M

[]1

2

3

4

Menu 25 - FILTERS

If the display reading is unstable due to small signal variations or noise, the use of digital filters may help to reduce these effects and eliminate display jittering.

The **filter-E** parameter only appears for process, load cell or potentiometer inputs.

The figure represents the access level to menu 25 -FILt-. At this stage, you can use one of the following keys:

ENTER To enter the first step of the menu.

To skip this menu and pass to the menu 26 -round.

To cancel this routine and return to the "-Pro-" stage.

Menu 24 FILt-P. Set filter P level.

The P filter acts as a delay on the display response to signal variations produced at the input. The effect of incrementing this filter level results in a softer re-sponse of the display to the input variations. Select filter level from 0 (filter disa-

bled) to 9 using the \checkmark key.

ENTER ESC

Validate changes and advance to the next step.

Cancel this routine and return to the "-Pro-" stage.

Menu 24 FILt-E. Set filter E level.

The E filter cuts off input variations exceeding from the limits of a moving band. This band becomes more selective as the filter level is increased. Select filter

level from 0 (filter disabled) to 9 using the 💛 key.

Validate changes and advance to the next step.

ESC

Cancel this routine and return to the "-Pro-" stage.

Menu 24 AVErAG. Program nº of readings to average.

This value represents the number of readings that are summed up together and averaged before the display is updated.

Use the \checkmark (change value) and \checkmark (change digit) keys to program the desired value from 1 to 200.

ENTER ESC

Validate all changes in this menu and return to the -Pro- stage.

Exit this step and return to the -Pro- stage.

01

2 3

4

12 E -

ΕD

25

:

:0

HOLD 25

1

2

3

4

 $\left[1 \right]$

2 3

 Π_4

Menu 26 - ROUND (Process, Load Cell and Potentiometer)

This menu allows selection among six levels of display rounding. When resolution is not critical, a rounding increment other than 1 may help stabilize the display.

The figure shows the indication "-round-" corresponding to the access to the round menu.

Press one of the following keys:

To get access to this menu. \frown

To skip this menu and pass to the menu 27 -VoL.

To cancel this menu and return to the "-Pro-" stage.

Menu 26 -round. Select rounding increment.

Press repeatedly the key to scroll through available options for the round filter ["**001**" = no rounding, "**005**" = round to 5 counts, "**010**" = round to 10 counts, "**020**" = round to 20 counts, "**050**" = round to 50 counts or "**100**" = round to 100 counts].

Validate changes and return to the "-Pro-" stage. Exit this step and return to the "-Pro-" stage.

VOLUME CALCULATIONS

Display Volume based on Pressure

There are several methods to calculate the volume of a fluid in a tank.

If a pressure sensor is placed in the bottom of the tank, the display may be scaled to convert the sensor's pressures into liquid height.

The Beta-M provides different approaches to calculate liquid volume.

1. For some special regular tank shapes, if you know the mathematical relationship between pressure and volume, it will only be necessary to scale the display by two points. For example, for a cylindric vertical tank, volume is the product of the cylinder base area and the liquid height.

2. If the tank is irregularly shaped, you can use the linearization feature to readout volume utilizando el método teach v linealización por tramos.

The method consists of filling the tank with known amounts of liquid, teach the input and enter the volume at each of the selected points over the height of the tank. The more the number of points used, the more accurate the measurement will be.

3. A third method that offers the instrument to extract volume is to set the automatic volume calculation function. This function can be used when the tank's shape correspond to one of the figures represented at right.

Automatic Volume Calculation

[]

HOLD 26

Ĩ.

:0

HOLD 26

The instrument has most common tank geometry functions pre-programmed to calculate volume; spherical, horizontal cylinder, horizontal cylinder with spherical ends and conical bottom vertical cylinder. The user only has to enter the tank dimensions as requested in the program routine.

tYP 4

02.000

06.000

3.000

00.000

03.000

dIAN

01.000

00000

LEn

LEn

27 LEn-1

27 dIAM-

27 SHAP

tYP 3

27 SHAPE

02,000

27 dIAM-1

06.000

27 LEn-1

00000.

Programming Procedure to Readout Volume

When using this method to display volume, a pressure sensor must be placed at the bottom of the tank to drive a signal proportional to fluid level.

DITEL

The first scaling phase is to convert the input signal to display height in meters. The height measurement is subsequently used to calculate volume.

The relation between pressure and height is linear, so two scaling points are enough to define the scale. The decimal point position must be chosen so that the display values are expressed in meters, for example, if the fluid level on top scale is 1.5m, suitable programmings would be 0001.5, 001.50, 01.500 or 1.5000 depending on desired resolution.

Once the signal is scaled to measure level in meters, the second phase is to activate the option 'VOL' to display volume. This option is enabled by selecting one of the available tanks shapes (see figure). After this, you must enter the diameter and length of the tank in meters, and finally set the decimal point of the display, which is independent from the decimal point programmed in the scaling procedure. Volume is expressed in whole liters despite of the point position.

Menu 27 - VOLUME CALCULATION

This menu appears exclusively for process and potentiometer configurations. It is not possible to enable this option if the integrator is active (menu 23). The automatic volume calculation facility can be only used when the tank's shape is one of the pre-programmed shapes shown

tYP 1

27 SHAPE

02.000

00000.

27 dIAM-1

27 dIAM

tYP 2

02,000

06.000

27 LEn-1

00000.

27 dIAM-

27 SHAPE

The figure shows the indication **"27 -VoL-"** corresponding to the input stage of the automatic volume calculation menu. Use one of the following keys:

To get acces to this menu.

To pass to the Menú u1 - SCAL.

To cancel the programming and return to the "-Pro-" stage.

Selection of the tank's shape. There are 5 options: **-no**- to disable this facility, **-tYP 1**- for sphererical shape, **-tYP 2**- for horizontal cylinder, **-tYP 3**- for horizontal cylinder with end caps and **-tYP 4**- for conical bottom vertical cylinder.

Press \checkmark to choose the most appropriate shape from the list (or set the option -no- to disable volume calculation).

Validate the choice and advance to the next programming phase.

ENTER

ESC

Cancel this routine and return to the "-Pro-" stage.

After selecting the tank's shape, it is necessary to enter the **dimensions of the tank**. The figure shows the phase corresponding to the programming of the diameter D1.

Press repeatedly the 🔺 key to set the active digit to the desired value and

to move one digit to the right until the value for the diameter D1, in meters is completed on the display (the digits to the right of the decimal point are fractions of meter).

ENTER

Validate the entry and advance to the next programming phase.

Cancel this routine and return to the "-Pro-" stage.

BETA-M/I

2

3

× :0

If you selected the **spherical shape (tYP 1)**, **this item does not appear**. In this case, go directly to the programming of the decimal point.

For the other shapes program the length L1 by using \checkmark to increment diait

value and \checkmark to move to next digit until completing the desired value in meters (the decimal point notation marks the position of whole meters). ENTER

Validate the entry and advance to the next programming phase.

Cancel the programming and return to the "-Pro-" stage.

SILO: The silo shape (tYP 4) is a combination of three parts and requires three diameters and three lengths to be programmed. You may have a tank that is composed of only one or two of the parts in which this shape is divided, to overcome this situation, the length of the missing parts should be programmed to zero. The last phase of this routine is to set the decimal point of the display.

After programming the tank dimensions, the display goes to all zeros with the decimal point in flash. This is the decimal point of the volume display, which is independent of that programmed in the scaling routine.

Shift the decimal point to the desired position using \frown . If no decimal point is required, locate it to the rightmost digit.

ENTER

ESC

Validate the entry and go to the "-Pro-" stage. ESC

Cancel the programming and return to the "-Pro-" stage.

KEYBOARD FUNCTIONS

The meter provides the following function keys: TARE, RESET, LIMIT and MAX/MIN. The functionality of each one in the "RUN" mode is described below.

TARE Key

A push of the key causes the current display to be stored in the tare memory.

The TARE LED denotes that a tare value other than zero is contained in the memory. The tare value (or offset for a temperature meter) can be displayed on

the second display by pressing the (key.

To clear the tare memory, **press and hold** the **Reset** key, then press **TARE**. Release the pressure of the keys in the reverse order

If a tare or tare reset operation is impossible from the front-panel, check the tare key lock settings

LIMIT key

During the RUN mode, this key is only operative in case that one of the following output options is installed: 2 relays (ref. 2RE), 4 relays (ref. 4RE), 4 NPN transistors (ref. 4OP) or 4 PNP transistors (ref. 4OPP).

The setpoint programmed values appear on the second display at each push of

the key independently of whether they are enabled or inhibited. The auxiliary display shows L1, L2, L3 or L4 depending of which value is being read.

During the setpoints routine, the functionnality of the rest of the keys remains active.

MAX/MIN key

Recalls the following parameters to the second display : first push recalls peak, second push recalls valley, third push recalls tare (or offset). If the integrator option is enabled, the fourth push recalls total and, if not enabled but the logic function n°30 (totalizer+batch) is programmed to one of the user inputs a new push shows the number of batch operations. The last push after this sequence blanks the lower displays.

The auxiliary display indicates which variable is being read in the second display : "HI" = peak, "Lo" = valley, "tA" = tare, "oF" = offset, "bA" = n^{o} of batches. The total value needs all 8 digits to be displayed.

Any selected parameter is permanently displayed and continuously updated if no action is taken.

RESET key

Press until desired parameter appears on the second display. This parameter may be peak ('HI'), valley ('Lo'), total or number of batch operations ('bA').

When desired variable is being read on the lower displays, **hold the (RESET) key** and press **(MAXMIN)**. Release first **(RESET)**.

A tare or tare reset operation updates automatically the peak and valley readings to the current display value.

ENTER key (3s)

A long press (3s) gives access to the programming blocking routines.

RESET + ENTER (3s)

A press of 3s of both RÈSET and ENTER restores the factory settings to the memory of the instrument. Press RESET first, then ENTER and hold both until the indication "StorE" appears on the second display.

REMOTE FUNCTIONS

The rear connector CN2 provides 4 user programmable optocoupled inputs that can be operated from external contacts or logic levels supplied by an electronic system. Four different functions may be then added to the functions available from the front-panel keys. Each function is associated to one of the CN2 connector pins (PIN 1, PIN 2, PIN 4 and PIN 5) and is activated by applying a falling edge or a low level pulse to the corresponding pin with respect to common (PIN 3). Each pin can be assigned one of the 36 functions listed on the following pages.

Factory default

As shipped from the factory, the CN2 connector allows the TARE, MAX/MIN and RESET operations be made in the same way as from the front-panel keyboard and incorporates one more function: the display HOLD.

The HOLD state, which is acknowledged by the LED "HOLD", freezes the display, the BCD and the analog outputs but does not halt the meter's internal operation nor the alarm outputs.

The HOLD state is maintained as long as pin2 is kept to a low level with respect to pin 3.

PIN (INPUT)	Function	Number
PIN 1 (INP-1)	RESET	Function nº 7
PIN 2 (INP-2)	HOLD	Function n ^o 9
PIN 3	COMMON	
PIN 4 (INP-4)	TARE	Function nº 1
PIN 5 (INP-5)	PEAK/VALLEY	Function n ^o 6

Connection with external voltage: Place a shunt between J1(2) and J2(5)

2

:::

654

]1

12

Fig. 74.1 Logic Change CN2 CN2 Input PNP J1 (2-3) & J2 (5-6) NPN J1 (1-2) & J2 (5-6)

The external electronics applied to the CN2 connector must be capable of withstanding 40 V and 20 mA present at all terminals with respect to COMMON. In order to guarantee the electromagnetic compatibility, please refer to the instructions given on page 87.

TABLE OF PROGRAMMABLE FUNCTIONS

- <u>N</u>^o: Function number.
- <u>Function</u>: Function name
- <u>Description</u>: Description and characteristics of the function.
- <u>Activation</u>:
 - Falling edge: The operation is performed on a falling edge applied to the pin with respect to COMMON.
 - Low level: The function remains activated while the corresponding pin is held at a low level with respect to COMMON. (*)

0 to 9: DISPLAY / MEMORY FUNCTIONS

Nº	Function	Description	Activation
0	None	Deactivated. He pin has no function	None
1	TARE (*)	Adds the current display value to the tare memory. The display goes to zero	Falling edge
2	RESET TARE	Adds the tare memory contents to the display value and clears the tare memory	Falling edge
3	PEAK	Recalls peak value. A new falling edge returns to normal reading	Falling edge
4	VALLEY	Recalls valley value. A new falling edge returns to normal reading	Falling edge
5	RESET PEAK/VALLEY	Clears the peak or valley memory (if the values are on display).	Falling edge
6	PEAK/VALLEY (*)	1^{st} push recalls peak, 2^{na} push recalls valley, 3^{ra} push brings the meter to the indication of the variable being measured	Falling edge
7	RESET (*)	Combined with (1) clears the tare memory Combined with (6) clears the peak or valley memories	Falling edge com- bined with (1) or (6)
8	HOLD1	Holds the while the outputs remain active display	Low level
9	HOLD2 (*)	Holds the display, the BCD and the analogical outputs	Low level

<u>ENGLISH</u>

113

10 to 12: FUNCTIONS ASSOCIATED WITH THE DISPLAY OF THE INPUT VARIABLE

Nº	Function	Description	Activation
10	INPUT	Displays the actual value of the input signal, in mV (blinking).	Low level
11	GROSS	Displays measured value + tare value = gross value	Low level
12	TARE	Shows the accumulated tare in memory.	Low level

13 to 16: FUNCTIONS ASSOCIATED WITH THE ANALOG OUTPUT

Nº	Function	Description	Activation
13	ANA GROSS	Makes the analog output follow the gross value (measured value $+$ tare).	Low level
14	ZERO ANA	Puts the analog output to the zero state (0 V for 0-10 V, 4 mA for 4-20 mA)	Low level
15	ANA PEAK	Makes the analog output follow the peak value	Low level
16	ANA VALLEY	Makes the analog output follow the valley value	Low level

17 to 23: FUNCTIONS FOR USE WITH A PRINTER VIA THE RS OUTPUTS

No	Function	Description	Activation
17	PRINT NET	Prints the net value.	Falling edge
18	PRINT GROSS	Prints the gross value.	Falling edge
19	PRINT TARE	Prints the tare value.	Falling edge
20	PRINT SET1	Prints the setpoint 1 value and its output status.	Falling edge
21	PRINT SET2	Prints the setpoint 2 value and its output status.	Falling edge
22	PRINT SET3	Prints the setpoint 3 value and its output status.	Falling edge
23	PRINT SET4	Prints the setpoint 4 value and its output status.	Falling edge

24 to 25: FUNCTIONS ASSOCIATED WITH THE SETPOINTS AND RS OUTPUTS

No	Function	Description	Activation
24	FALSE SETPOINTS	Exclusively for instruments WITHOUT relays/transistors control out- puts card. Allows programming and operation of 4 setpoints.	Low level
25	RESET SETPOINTS	Exclusively for instruments with 1 or more setpoints programmed as "latched setpoints". Deactivates the setpoints output.	Falling edge

26 to 36: SPECIAL FUNCTIONS

No	Function	Description	Activation
26	ROUND RS	The display value as sent via the RS output, includes no filtering or rounding	Low level
27	ROUND BCD	Makes the BCD output follow the display value without rounding.	Low level
28	SEND ASCII	Transmission of the last 4 digits of the display to a remote serial indicator. By holding the pin to a low level, the display is continuously sent at a rate of 1/s.	Low level or Falling edge
29	Deactivate Setpoints	Deactivates the activity of the setpoints and leaves the outputs at still	Low level
30	Batch	Adds the present value of the display to the totalizer and increments the batch counter once.	Falling edge
31	Visualize Total	The value of the totalizer appears in the display, alternating its high part and low part of four digits each. The auxiliary display shows "H" or "L", depending of which part we are looking to.	Low level
32	Visualize Batch	The display shows the value of the batch counter. The auxiliary display indicates "b".	Low level
33	Reset Total & Batch	Reset Totalizer and Batch counter.	Falling edge
35	Print Total & Batch	Print Total and Batch.	Falling edge
36	Hold & Print the Max.	When activated it resets the value of the Max. Then it saves the maxi- mal value while the function is still activated. Finally it prints it when the function is deactivated	Low level

REMOTE FUNCTIONS PROGRAMMING

If we have already decided which functions we are going to program for the connector, we can access module 6 for configuring the logic inputs. This consists of four configurable menus, one for each PIN of connector CN2.

Press to enter in the programming mode (-Pro- level) and press repeatedly until the indication **"LoGInP**" appears on the display. From this stage press to access the logic inputs configuration. The key rotates around the four logic inputs to view the function number assigned to each pin. The key changes the number if desired.

InP

Consult the tables , for the description and activation of each of these functions. Next, the programming of Pin 1 is explained, the rest of the pins are configured in the same way.

MENU 61 - PIN 1 Programming

Assign logic function to **PIN 1**.

The main display shows the function number assigned to logic input 1. Refer to the table to select function and use the key to change the number if desired.

Pass to the programming of the following logic input.

Validate changes and return to the -Pro- stage.

Exit from this menu and go to the -Pro- stage.

LOCK OUT PROGRAMMING

Security Menu Diagram

The attached figure shows the special security menu. It configures the blocking of the programming (total or partial). Access to this menu is

done from the work mode, by pressing the **ENTER** key for 3 seconds, until the indication "Code" appears.

The instrument is supplied from the factory with a default code, "0000". Once this is entered, we will find the indication "CHAnGE" that will allow us to enter a personal code, which we must write down and save properly (do not trust your memory). After entering a personal code, the factory code becomes useless.

If we enter a wrong code, the instrument will automatically exit to work mode.

The total blocking of the programming, indication "tot-LC", is done by changing the value to "1". While the partial blocking of the programming is done by changing the value to "0". Next, the menus and submenus whose programming can be blocked will appear.

The "StorE" display indicates that the changes made have been successfully saved.

ī

 02

03

The instrument is supplied with unlocked programming, giving access to all programming levels. Once the programming of the instrument is complete, we recommend taking the following security measures:

Block access to programming, preventing modifications to the programmed parameters.

Lock keyboard functions that may occur accidentally.

There are two blocking modes: partial and total. If programming parameters are to be readjusted frequently, perform a partial lockout. If you don't plan to make adjustments, perform a full lockout. Locking of keyboard functions is always possible.

The blocking is done by software with the previous introduction of a customizable code. Change the factory code as soon as possible, writing down and keeping your personalized code in a safe place.

<u>TOTAL LOCKOUT</u>

With the instrument fully locked, it will be possible to access all programming levels to check the current configuration, although it will **not be possible to enter or modify data**. In this case, when programming is entered, the indication **"-dAtA-"** will appear on the secondary display.

SELECTIVE LOCKOUT

With the instrument partially locked, it will be possible to access all the programming levels to check the current configuration, **being able to enter or modify data in those menus or submenus that are not locked**. In this case, when entering the programming menus, the indication **"-Pro-"** will appear on the secondary display.

The menus or submenus that can be locked are:

- Setpoint 1 programming (menu 31).
- Setpoint 2 programming (menu 32).
- Setpoint 3 programming (menu 33).
- Setpoint 4 programming (menu 34).
- Programming (module 10).
- Scale (menus 21/22, 23 and 27).
- Display options and filters (menus 24, 25 and 26).
- Analog output programming (module 40).
- Serial output configuration (module 50).
- Programming of logic inputs (module 60).
- Direct access to the programming of the Setpoints.

In addition to the menus corresponding to the options that are installed ("SEt1", "SEt2", "SEt3", "SEt4", "AnAout" or "rS CoM").

NEW FUNCTIONS OF THE RELAY MODULE

Use setpoint 2 to detect max reading

The 'MAX' option is for unfiltered peak detection, the 'MAX-F' option is for filtered peak values.

In this case, all the options programmed for the setpoint are taken into account (Latch, HI-LO, RET-HYS, Blink).

The value to be programmed in the setpoint value parameter will be the display value from which the peak begins to be evaluated; below this value it does not act.

The value to be programmed in the delay / hysteresis value parameter will be the time that the relay / opto will remain activated once the peak is reached (except if it is latch).

The output is activated when the display value stops increasing (once the setpoint2 value has been exceeded) for a number of readings programmable by the user from 0 to 99.

The programming of the number of readings is presented after the programming of the setpoint2 mode when this option has been selected.

Activate and deactivate setpoint by command by rs232C or rs485

This function is programmed by selecting the 'CoM' option in the setpoint activation selection level. The rest of the options do not appear in the programming routine except for the flashing of the display. Once the outputs are activated, they are not deactivated in overflow or when going through programming.

Comparison of the setpoints with the value of the totalizer

In this case, the setpoint value is programmed on the secondary display. The rest of the options are identical to those of a normal setpoint.

TARE MODE

Using the key we select the way in which the instrument will treat the taring process. Whenever this menu is accessed, the tare value stored in the instrument's memory will be set to zero, and as always when the instrument is in this state, the TARE led will appear off. Once the operating mode has been selected, we exit to the "RUN" mode, from which the taring process will be carried out.

ERrE I	On tArE1 mode at one press of the key, the instrument stores the value shown on display at this moment, if it is not on overflow, the TARE LED lights and from this moment the shown value is net value (the measured minus the stored). If the instrument already has a TARE and you press once again the TARE key ht value shown at this moment will be added to the previous TARE value, being the sum of both the resulting TARE. To clear TARE value, see page 73.
68rE2	In this mode, the TARE key has no effect if the instrument is in run mode. The tare value now is entered manually, being the instrument run like in the previos mode. To the edit menu we will access from the run mode, by pressing the ENTER key going to the -Pro- mode and by pressing
	TARE key more than 3 seconds we can enter the tare value to memory using the \longrightarrow and
	keys and pressing ENTER key we return ti the run mode with the TARE LED turned on, not allowing do more tares from the keyboard. It has to be reprogrammed to reset the tare.
	In this mode we have to program the "net" value, from RUN mode press more than 3 seconds the
68rE3	key and according the diagram, program the net value (usually indicated in the container).
	Action TARE, as in the tArE2 case will not take effect until a press of key, being the instru- ment in RUN mode, also the TARE LED will light. The value stored now on TARE is the difference between the measured value at the moment of TARE was made and th "net" value programmed. Being the display shown, the difference between the measured and calculated tare. You will need
	enter the programming menu and go through "CndSP" > "ModtA" to delete the TARE, the key is inactive until reprogrammed.

Example:

A process using the liquid in a container that is known as the manufacture's gross weight 100Kg and 75Kg net. It is used in the process of weighing a load cell connected to an instrument and need to know the net weight of liquid at every moment of the process. Selecting this mode of tare, net value would be introduced by editing. When the instrument is measuring the weight of the drum, now completely filed with liquid, which would be 100Kg, tare the instrument and the measure now shows 75Kg and measuring from this value to 0 during the emptying of it

Programming:

If have selected input Process or Potentiometer, on the menu 20 "CndSP" after submenu 27 "–VoL-" and with another

push of key you get the submenu **ModTA**.

If have selected input "Load Cell" on the menu 20 "CndSP" after the submenu 26 and pushing \checkmark key you get the submenu **ModTA**.

If selected Process or Potentiometer SCAL **tEACH** IntEG VoL ModTA dSP FILt round If selected Load Cell SCAL **tEACH** dSP FILt ModTA round Sbr tArE2 tArE1 tArE3

PROGRAMMING NET VALUE IN TARE MODE 3

To edit the net value, being the instrument in RUN mode, press the Key to get the indication –Pro- then press the Key more than 3 seconds, showing the display the last TARE value programmed and the most left red digit blinking with key and key program the NET value, usually indicated on the container, validate with Key and the instrument goes back to normal working, **at this moment with the container over the platform should be pressed** Key , passing the instrument to show the programmed net weight and activating the TARE led, from this moment on the TARE key has no effect on the weight indication.

MENU 2 - SENSOR BREAK

This function allows detecting any broken wire that connect the sensor "Load Cell" to the instrument. The analysis to detect the broken wires is done every 1,5 seconds and the response of Relays and ANA options (if used) will be the same if it were a overflow (**oVFLo**) situation, input signal greater than allowed.

NOTE: This detection system works only if the sensor is supplied with the excitation voltage from the instrument.

If the input "Load Cell" has been programmed, on the menu 20 "CndSP" after the submenu 28 with an other press of

key we got the submenu 29 -Sbr- Sensor Break and pressing key is possible to select –on- to activate or –oFF- to deactivate.

FAIL SAFE

Function that allows detecting the power supply fault or an instrument fault and in this way can be informed the PLC or another general system of supervision using the relay option programmed in this way.

This function can be programmed on any of the activated relay, in the submenu 31, 32, 33, 34 after the programming parameter "**–Hi-Lo-**" will show "**–no nc-**" (no=normally open), (nc=normally closed)

-nc- is the FAIL SAFE mode

r.o.C. Function / (rate of Change)

The function **r.o.C** is useful to detect the changing speed of display value, depending on programmed setpoint polarity we detect the increasing or decreasing.

In mode **r.o.C**., if the setpoint values is, for example = 1000, that means that the alarm will be activated when the display value increase more than 1000 points per second.

If the setpoint value were, for example = -1000, the alarm would be activated when the display value decrease with a speed greater than 1000 points per second.

The **r.o.C**. alarms have the same programmable options than the rest of alarms, namely, you can choose the mode of action, HI-LO, NO-NC, Latch, delay-histeresys, LED-LED+blink. The only difference is if delay is selected, on the **r.o.C**. alarms not apply to the activation and deactivation, but only to the deactivation of the alarm. This function is applicable separately to activate each of setpoints.

Programming:

If has been programmed input: Process, Potentiometer, Load Cell in the submenu 31 CoMP after the "-VAL-" pressing

the key gets the function **r.o.C.**, or in the submenu 32 gets after the MaxF or totAL (if activated). If has been programmed input : Temp, in the submenus 31, 32, 33, 34 gets after the –VAL-

Note: The **ovflo** situation (be by sensor break, or excess of input signal, or incorrect programming) leads to the relays to the rest situation that corresponds according to the program established.

PROCESS, POTENTIOMETER and LOAD CELL

	nEt GroS PEAK VAL MAX(*) MAXF(*) totAL(**) roC
--	--

(*) OnlySetpoint 2

(**) Only if the totalizer or integrator is activated

THERMOCOUPLE and PT100

doSE / (DOSAGE)

If has been programmed input "Load Cell, Potentiometer or Process", **only in the submenu 31** is possible to select the function **"doSE"**

WAY of WORKING of SETPOINT1 in MODE "doSE"

When the function "doSE" is selected on the setpoint 1 menu, can not choose the comparison value, since it will be on the net value of the display.

Nor can choose HI or LO mode as this will depend on whether the setpoint is positive (HI) or negative (LO) and the numerical value of setpoint will have to be mandatory to program on the direct programming of setpoint values routine (keys ENTER and LIMIT).

When exit from menu 31 with "doSE" option selected, the setpoint is locked and it doesn't work.

To start working have to enter on direct programming routine and gives it a value.

When you press ENTER, the set value is added to the net internal value of display (if positive, "and is automatically HImode) or subtracted (if negative," and is put in LO-mode). At this time, enables the operation of the setpoint 1.

Each time the display increases (HI) or decrease (LO) in a number of points equal to the programmed setpoint 1 value will activate the output relay.

Likewise, if the logical function n° 30 has been programmed, the setpoint value will be added to the totalizer and increase the batch number in one unit.

If you also enable pin which is scheduled this logic function, two parameters are displayed in the main and secondary displays.

Activation of the relay output last time has been programmed on parameter "dLY" Setpoint1 menu or, if selected mode "LATCH", will be permanently activated until a reset is made of setpoints LATCH (logical function No. 25).

(*) It's not possible to program "trAC" if on the menu 31 has been programmed "doSE"

TECHNICAL SPECIFICATIONS

INPUT

Process Input	Tensión ±10Vdc	Corriente ±20mAdc
Max. Resolution	0.1mV	1µA
Input Impedance	1MΩ	15Ω
Excitation24V	/@30mA, 10/5	/@120mA)
Max. error Temperature coefficient	±(0.1% readir	ng + 3 dig) 0ppm / °C

Load Cell Input

Voltage	±300mVdc
Máx. Resolution	0.15 μV
Input Impedance	
Excitation	
Max. error	. ±(0.1% reading + 6 dig)
Temperature coefficient .	100ppm / °C

Potentiometer Input

Voltage	±10Vdc
Input Impedance	10 MΩ
Display resolution	0.001%
Max. error	$\pm (0.1\% \text{ reading} + 3 \text{ dig})$
Temperature coefficient	100ppm / °C

Temperature Input

Cold Junction compensation	on10 °Ctoa +60 °C
Cold Junction	±(0.05 °C/ °C +0.1 °C)
Pt100 excitation current	< 1 mA dc
Máx. cable resistance	40 Ω /cable (balanced)
Temperature coefficient	

Tarrah	Range	Accuracy	Range	Accuracy
Input	(res. 0.1 °)	(res. 0.1 ⁶)	(res. 1º)	(res. 1º)
TC \\1"	-200.0 to +1100.0 °C	0.4% L ±0.6 °C	-200 to +1100 °C	0.4% L ±1 ° C
	-328.0 to +2012.0 °F	0.4% L ±1 ºF	-328 to +1472 ºF	0.4% L ±2 ° F
тс <i>"к"</i>	-200.0 to +1200.0 °C	0.4% L ±0.6 °C	-200 to +1200 °C	0.4% L ±1 ° C
IC K	-328.0 to +2192.0 °F	0.4% L ±1 ºF	-328 to +2192 °F	0.4% L ±2 ° F
TC "T"	-150.0 to +400.0 °C	0 to 0 °C 0.4% L ±0.6 °C	-150 to +400 °C	0.4% L ±1 ° C
	-302.0 to +752.0 °F	0.4% L ±1 ºF	-302 to +752 °F	0.4% L ±2 ° F
TC "R″	-50.0 to 1700.0 °C	0.5% L ±2 °C	-50 to 1700 ⁰C	0.5% L ±4 ° C
	-58.0 to +3092.0 °F	0.5% L ±4 ºF	-58 to +3092 °F	0.5% L ±7 º F
TC "S"	-50,0 to 1700,0 °C	0.5% L ±2 °C	-50 to 1700 °C	0.5% L ±4 ° C
	-58.0 to +3092.0 °F	0.5% L ±4 ºF	-58 to +3092 °F	0.5% L ±7 ° F
TC "E″	-200.0 to 1000.0 °C	0.4% L ±1 °C	-200 to 1000 °C	0.4% L ±2 °C
	-328.0 to +1832.0 °F	0.4% L ±2 °F	-328 to +1832 °F	0.4% L ±4 ºF
D:100	-100.0 to +800.0 °C	0.2% L ±0.6 °C	-100 to +800 °C	0.2% L ±1 °C
Pt100	-148.0 to +1472.0 °F	0.2% L ±1 ºF	-148 to +1472 ºF	0.2% L ±2 ºF

FUSES (DIN 41661) (Not supplied)

BETA-M (230/115 V AC)F 0.2 A/ 250 V BETA-M2 (24/48 V AC)F 0.5 A/ 250 V

CONVERSION

Technique	ΣΔ
Resolution	24 bits
Rate	18/ s
Warm up time	10 min.

FILTERS

Filler P	
Frequence (- 3 dB)	from 4Hz to 0.05Hz
Slope	from 14 to 37dB/10
Filter E	
Programmable	

DISPLAY

Main	999999/+99999, 6 red digits 14 mm
Secondary .	2+6 green digits 8 mm
Decimal Point	programmable
LEDs	
Reading Rate	55.5 ms/ 250 ms/ 1 s

ERROR INDICATIONS

Negative Overflow	<i>- OuFLO</i>
Positive Overflow	+ 0uFL0
Sensor Break	

POWER SUPPLY

BETA-M	115/ 230 V, (±10%) 50/60 Hz AC
BETA-M2	
Consumption	15 W (without options), 10 W (max.)

ENVIRONMENTAL

Indoor use

Operating temperature	10°C to 60°C
Storage temperatura	25 °C to +85 °C
Relative humidity (non condens	ed)<95 % to 40 °C
Altitude	2000 m
Altitude	2000 m

DIMENSIONS

Dimensions	
Panel Cut-Out	92x45 mm
Weight	600 g
Case material	polycarbonate s/UL 94 V-0
Front sealing	IP65

ANEXO 1 / ANNEXE 1 / ANNEX 1

LIST OF COMMANDS ASCII/ISO/MODBUS

Request of data

ASCII	ISO	MODBUS	Information
Ι	01	01	Logic inputs status
Р	0P	0P	Peak value
V	0V	0V	Valley value
Т	0T	0T	Tare/Offset value
D	0D	0D	Display value
Z	0Z	0Z	Totalizer value
Х	0X	0X	Batch Counter value
NB	NB	NB	Comm Card Type
E	0E	0E	bit 0 = input overflow, bit 1= scale overflow, bit 2 = Sensor break

Modification of data

ASCII	ISO	MODBUS	Parameter
M1	M1	M1	Change the Setpoint 1 value in the memory
M2	M2	M2	Change the Setpoint 2 value in the memory
M3	M3	M3	Change the Setpoint 3 value in the memory
M4	M4	M4	Change the Setpoint 4 value in the memory
TS	TS	-	Set Tare Value (Note 1)

Nota 1. La función tara realizada por teclado tomará como tara el valor de display que exceda del offset.

No existe forma de resetar el offset directamente; será necesario enviar un nuevo comando de escritura con valor offset igual a cero. Este valor se graba en la memoria del aparato cada vez que se envía el comando "TS".

Remarque 1. La fonction de tare effectuée par le clavier prendra comme tare la valeur affichée qui dépasse le décalage.

Il n'existe aucun moyen de réinitialiser directement le décalage ; il faudra envoyer une nouvelle commande d'écriture avec une valeur de décalage égale à zéro. Cette valeur est enregistrée dans la mémoire de l'appareil à chaque envoi de la commande « TS ».

Note 1. The tare function performed by keyboard will take as tare the display value that exceeds the offset.

There is no way to reset the offset directly; it will be necessary to send a new write command with offset value equal to zero. This value is recorded in the device's memory each time the "TS" command is sent.

LIST OF COMMANDS ASCII/ISO/MODBUS

Commands

ASCII	ISO	MODBUS	Command
n	0n	0n	Reset latched outputs
р	0р	0р	Reset peak
v	0v	0v	Reset valley
r	0r	0r	Reset tare
t	0t	0t	Tare the display
z	0z	0z	Reset totalizer
х	0x	0x	Reset batch counter
a1	a1	a1	Activate setpoint 1
a2	a2	a2	Activate setpoint 2
a3	a3	a3	Activate setpoint 3
a4	a4	a4	Activate setpoint 4
d1	d1	d1	Deactivate setpoint 1
d2	d2	d2	Deactivate setpoint 2
d3	d3	d3	Deactivate setpoint 3
d4	d4	d4	Deactivate setpoint 4

ADRESS OF THE VARIABLES IN THE MEMORY

PROGRAMMING DATA (READ/WRITE)

ISO	MODBUS	Variable	Description
0	0		Sign : 0x00h = +, 0x0Ah = -
1	1		digit 4
2	1		digit 3
3			digit 2
4	2		digit 1
5			digit 0
6	3		sign
/		-	digit 4
8	4	INPUT POINT 2	digit 3
9	-	-	digit 2
10	5		algit 1 digit 0
11	6		ulyit U
12	0		Sigii digit 4
13	7	INPUT POINT 3	digit 3
15	1 '		digit 3
16	8		digit 1
17	Ĭ		digit 0
18	0		sign
19	9		digit 4
20	10	INPLIT POINT 4	digit 3
21	10		digit 2
22	11		digit 1
23			digit 0
24	12		sign
25		4	digit 4
26	13	INPUT POINT 5	
2/			
20	14		digit 1
29			aigit u

30	15		sign
31	15		digit 4
32	16	INPLIT POINT 6	digit 3
33	10		digit 2
34	17		digit 1
35	17		digit 0
36	18		sign
37	10		digit 4
38	19	INPLIT POINT 7	digit 3
39	19		digit 2
40	20		digit 1
41	20		digit 0
42	21		sign
43	21		digit 4
44	22	INPLIT POINT 8	digit 3
45	22		digit 2
46	23		digit 1
47	25		digit 0
48	24		sign
49	21		digit 4
50	25		digit 3
51	25		digit 2
52	26		digit 1
53	20		digit 0
54	27		sign
55	27		digit 4
56	28	INPLIT POINT 10	digit 3
57	20		digit 2
58	29		digit 1
59	25		digit 0
60	30		sign
61	50		digit 4
62	31	INPLIT POINT 11	digit 3
63	51		digit 2
64	32		digit 1
65	52		digit 0

66	33		sign
67	55		digit 4
68	34	INPLIT POINT 12	digit 3
69	51		digit 2
70	35		digit 1
71	55		digit 0
72	36		sign
73	50		digit 4
74	37	INPUT POINT 13	digit 3
75			digit 2
76	38		digit 1
77	50		digit 0
78	39		sign
79	55		digit 4
80	40	INPUT POINT 14	digit 3
81	10		digit 2
82	41		digit 1
83			digit 0
84	42		sign
85		INPUT POINT 15	digit 4
86	43		digit 3
87	15		digit 2
88	44		digit 1
89			digit 0
90	45		sign
91	15		digit 4
92	46	INPLIT POINT 16	digit 3
93			digit 2
94	47		digit 1
95	17		digit 0
96	48		sign
97	10		digit 4
98	49	INPLIT POINT 17	digit 3
99			digit 2
100	50		digit 1
101	50		diait 0

102	51		sign
103	51		digit 4
104	50		digit 3
105	52	INFUT FOINT 10	digit 2
106	F2		digit 1
107	53		digit 0
108	Γ4		sign
109	54		digit 4
110	F F	INDUT DOINT 10	digit 3
111	55	INPUT POINT 19	digit 2
112	50		digit 1
113	50		digit 0
114	57		sign
115	57		digit 4
116	FO		digit 3
117	20	INPUT POINT 20	digit 2
118	50		digit 1
119	59		digit 0
120	60		sign
121	00		digit 4
122	61		digit 3
123	01		digit 2
124	67		digit 1
125	02		digit 0
126	63		sign
127	05		digit 4
128	64		digit 3
129	т	INFOT FOINT 22	digit 2
130	65		digit 1
131	05		digit 0
132	66		sign
133	00]	digit 4
134	67		digit 3
135	07		digit 2
100		1	
136	68		digit 1

138	60		sign
139	09		digit 4
140	70		digit 3
141	70	INFOT FOINT 24	digit 2
142	71	1	digit 1
143	/1		digit 0
144	70		sign
145	12		dīgit 4
146	72		dīgit 3
147	75	INPUT POINT 25	dīgit 2
148	74		digit 1
149	/4		digit 0
150	75		sign
151	75		digit 4
152	76		digit 3
153	70	INFOT FOINT 20	digit 2
154	77		digit 1
155	//		digit 0
156	78		sign
157	70	INPUT POINT 27	digit 4
158	70		digit 3
159	75		digit 2
160	80		digit 1
161	00		digit 0
162	Q1		sign
163	01	1	digit 4
164	82		digit 3
165	02		digit 2
166	83		digit 1
167	00		digit 0
168	84		sign
169	г]	digit 4
170	85		digit 3
171	60	1111 01 1 01111 29	digit 2
172	86		digit 1
173	00		digit 0

174	07		sign
175	07		digit 4
176	88		digit 3
177	00		digit 2
178	80		digit 1
179	09		digit 0
180	00		sign
181	90		digit 4
182	01		digit 3
183	91	DISPLAT FOINT I	digit 2
184	02		digit 1
185	92		digit 0
186	03		sign
187	95		digit 4
188	04		digit 3
189	94	DISPLAT FOINT 2	digit 2
190	05		digit 1
191	95		digit 0
192	06		sign
193	90	DISPLAY POINT 3	digit 4
194	07		digit 3
195	57		digit 2
196	08		digit 1
197	90		digit 0
198	00		sign
199	33		digit 4
200	100		digit 3
201	100	DISPLAT POINT 4	digit 2
202	101		digit 1
203	101		digit 0
204	102		sign
205	102		digit 4
206	103		digit 3
207	105	DISPLAT FOINT 5	digit 2
208	104		digit 1
209	104	digit 0	

210	105		sign
211	105		digit 4
212	106		digit 3
213	100	DISPLAT POINT 6	digit 2
214	107		digit 1
215	107		digit 0
216	100		sign
217	108		digit 4
218	100	DICDLAY DOINT 7	digit 3
219	109	DISPLAT POINT 7	digit 2
220	110		digit 1
221	110		digit 0
222			sign
223	111		digit 4
224	110		digit 3
225	112	DISPLAY POINT 8	digit 2
226	110		digit 1
227	113		digit 0
228	114		sign
229	114		digit 4
230	115		digit 3
231	115	DISPLAT POINT 9	digit 2
232	116		digit 1
233	110		digit 0
234	117		sign
235	11/		digit 4
236	110	DISDLAY DOINT 10	digit 3
237	110	DISPLAT FOINT 10	digit 2
238	110		digit 1
239	119		digit 0
240	120		sign
241	120		digit 4
242	121		digit 3
243	171	DISPLAT FOUNT II	digit 2
244	122		digit 1
245	122		digit 0

246	172		sign
247	125		digit 4
248	124		digit 3
249	124	DISPLAT FOINT 12	digit 2
250	105	1	digit 1
251	125		dīgit 0
252	126		sign
253	120		digit 4
254	127		digit 3
255	127	DISFLAT FOINT IS	digit 2
256	128		digit 1
257	120		digit 0
258	120		sign
259	129		digit 4
260	130	DISPLAY POINT 14	digit 3
261	150	DISPLAT POINT 14	digit 2
262	131		digit 1
263	151		digit 0
264	132		sign
265	192	DISPLAY POINT 15	digit 4
266	133		digit 3
267	100		digit 2
268	134		digit 1
269	151		digit 0
270	135		sign
271	155		digit 4
272	136	DISPLAY POINT 16	digit 3
273	150	DISERT FORT TO	digit 2
274	137		digit 1
275	157		digit 0
276	138		sign
277	150		digit 4
278	139	DISPLAY POINT 17	digit 3
279	135	DISPLAT FOINT 17	digit 2
280	140		digit 1
281	110	digit 0	

282	141		sign
283	171		digit 4
284	142		digit 3
285	172	DISPLAT FOINT 16	digit 2
286	140		digit 1
287	145		digit 0
288	144		sign
289	144		digit 4
290	145	DICDLAY DOINT 10	digit 3
291	145	DISPLAT POINT 19	digit 2
292	140		digit 1
293	140		digit 0
294	147		sign
295	147		digit 4
296	140		digit 3
297	140	DISPLAT POINT 20	digit 2
298	140		digit 1
299	149		digit 0
300	150		sign
301	150		digit 4
302	151	DICDLAV DOINT 21	digit 3
303	151	DISPLAT POINT ZI	digit 2
304	150		digit 1
305	152		digit 0
306	150		sign
307	155		digit 4
308	154		digit 3
309	104	DISPLAT POINT 22	digit 2
310	155		digit 1
311	155		digit 0
312	156		sign
313	130		digit 4
314	157	DICDLAY DOINT 22	digit 3
315	12/	DISPLAT POINT 23	dīgit 2
316	1 5 0	1	dīgit 1
317	130	1	digit 0

318	150		sign
319	139		digit 4
320	160		digit 3
321	100	DISPLAT FOINT 24	digit 2
322	161		digit 1
323	101		digit 0
324	167		sign
325	102		digit 4
326	162		digit 3
327	105	DISPLAT FOINT 25	digit 2
328	164		digit 1
329	104		digit 0
330	165		sign
331	105		digit 4
332	166	DICDLAY DOINT 26	digit 3
333	100	DISPLAT FOINT 20	digit 2
334	167		digit 1
335	107		digit 0
336	169		sign
337	100		digit 4
338	160	DICDLAY DOINT 27	digit 3
339	109	DISPLAT POINT 27	digit 2
340	170		digit 1
341	170		digit 0
342	171		sign
343	1/1		digit 4
344	172		digit 3
345	172	DISPLAT FOINT 20	digit 2
346	172		digit 1
347	175		digit 0
348	174		sign
349	1/4]	digit 4
350	175		digit 3
351	175	DISELAT FUTINE 29	digit 2
352	176	1	digit 1
353	110		digit 0

254			
354	177		sign
355	1//		digit 4
356	170	DISPLAY POINT 30	digit 3
357	1/0		digit 2
358	170	1	digit 1
359	1/9		digit 0
360	100		digit 7 / sign
361	180		digit 6
362	101		digit 5
363	181		digit 4
364	100	SETPOINT 1	digit 3
365	182	1	digit 3
366			digit 2
367	183		digit 1
368			digit 7 / sign
369	184		digit 6
370			digit 5
371	185		digit 3
372		SETPOINT 2	digit 1
373	186		digit 3
374			digit 2
375	187		digit 1
376			digit 7 / sign
377	188		digit 6
378			digit 5
379	189		digit 4
380		SETPOINT 3	digit 1
381	190		digit 3
382			digit 1
383	191		digit 0
384			digit 7 / sign
385	192		digit 6
386		· ·	digit 5
387	193	SETPOINT 4	digit 3
388			digit 3
389	194		digit 3
202			

390	105		digit 1
391	195		digit 0
392			digit 4
303	196		digit 7
393		DELAY / HYSTERESIS	
394	197	SETPOÍNT 1	
395			digit 1
396	100		digit 0
397	190		digit 4
398			digit 3
200	199	DELAY / HYSTERESIS	digit 2
399		SETPOINT 2	
400	200		
401	200		digit 0
402	201		digit 4
403	201		digit 3
404		DELAY / HYSTERESIS	digit 2
405	202	SETPOINT 3	digit 1
405			
406	203		
407	200		digit 4
408	204		digit 3
409	204	DELAT / HISTERESIS	digit 2
410		SETPOINT 4	digit 1
/11	205		digit 0
412			uigit v
412	206		U=OII, 1=OII, 2=LIACK, 3=ISCOM
413		ON-OFF SETPOINT 2	U=off, 1=on, 2=track, 3=rscom
414	207	ON-OFF SETPOINT 3	0=off, 1=on, 2=track, 3=rscom
415	207	ON-OFF SETPOINT 4	0=off, 1=on, 2=track, 3=rscom
416		COMP SETPOINT 1	0=net 1=gross 2=neak 3=vallev 6=total
417	208		0-net 1-groce 2-neal 2-valley 1-may E-may filter E-total
410	l		U-IICL, I-YIUSS, Z-PEAK, J-VAILEY, Y=IIIAX, J=IIIAX IIILEF, D=LULAI
418	209	COMP SETPOINT 3	U=net, 1=gross, 2=peak, 3=valley, b=total
419		COMP SETPOINT 4	U=net, 1=gross, 2=peak, 3=valley, 6=total
420	210	HI-LO SETPOINT 1	0=hi, 1=lo
421	210	HI-LO SETPOINT 2	0=bi, 1=lo
422		HI-LO SETPOINT 3	
422	211		
423			
424	212	DELAY-HYST SETPONT I	U=delay, 1=hysteresis-1, 2=hysteresis-2
425		DELAY-HYST SETPONT 2	0=delay, 1=hysteresis-1, 2=hysteresis-2
400		DELAX LIVET CETRONT 2	
4/6			
720	213	DELATITIST SETTONTS	0-delay, 1-hysteresis-1, 2-hysteresis-2
427	213	DELAY-HYST SETPONT 4	0=delay, 1=hysteresis-1, 2=hysteresis-2
427	213	DELAY-HYST SETFORT 4	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=ves
427 428 429	213	DELAY-HYST SETFORT 4 LATCH SETPOINT 1	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes
427 427 428 429	213	DELAY-HYST SETFONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes
427 428 429 430	213 214 215	DELAY-HYST SETFORT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes
427 428 429 430 431	213 214 215	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes
427 428 429 430 431 432	213 214 215	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink
420 427 428 429 430 431 432 433	213 214 215 216	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink
427 427 428 429 430 431 432 433 432	213 214 215 216	DELAY-HYST SETFONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 PLINK SETPOINT 3	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink
427 428 429 430 431 432 433 434	213 214 215 216 217	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 3	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink
420 427 428 429 430 431 432 433 434	213 214 215 216 217	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink
420 427 428 429 430 431 432 433 434 435 436	213 214 215 216 217 218	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink
420 427 428 429 430 431 432 433 434 435 436 437	213 214 215 216 217 218	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=yes 2 to 30
427 428 429 430 431 432 433 434 435 436 437 438	213 214 215 216 217 218	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 dioit 1
420 427 428 429 430 431 432 433 434 435 436 437 438	213 214 215 216 217 218 219	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO № LINEARIZATION POINTS № READINGS SETPOINT	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 diata 0
420 427 428 429 430 431 432 433 434 435 436 437 438 439	213 214 215 216 217 218 219	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=yes 2 to 30 digit 1 digit 0
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440	213 214 215 216 217 218 219 220	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=yes 2 to 30 digit 1 digit 0 sign
427 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441	213 214 215 216 217 218 219 220	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO № LINEARIZATION POINTS № READINGS SETPOINT MAX	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=yes 2 to 30 digit 1 digit 0 sign digit 4
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441	213 214 215 216 217 218 219 220	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO № LINEARIZATION POINTS № READINGS SETPOINT MAX	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 dinit 3
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442	213 214 215 216 217 218 219 220 221	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 BLINK SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 2
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443	213 214 215 216 217 218 219 220 221	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 444	213 214 215 216 217 218 219 220 221 222	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 1 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=lED, 1=LED+blink 0=led, 1=yes 2 to 30 digit 1 digit 2 digit 3 digit 1 digit 2 digit 1
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445	213 214 215 216 217 218 219 220 221 222	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 3 digit 2 digit 1 digit 0 ligit 1 digit 0
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446	213 214 215 216 217 218 219 220 221 222	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 2 digit 1 digit 0 sign
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446	213 214 215 216 217 218 219 220 221 222 222 223	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 1 digit 0 sign digit 4
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447	213 214 215 216 217 218 219 220 221 222 223	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 2 digit 1 digit 0 sign
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448	213 214 215 216 217 218 219 220 221 222 223 223 224	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO № LINEARIZATION POINTS № READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=lED, 1=LED+blink 1=LED+blink 1=LED+bl
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449	213 214 215 216 217 218 219 220 221 222 223 224	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 4 digit 4 digit 4 digit 4 digit 4 digit 4
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450	213 214 215 216 217 218 219 220 221 222 223 224	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0-delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 1 digit 4 digit 4 digit 4 digit 3 digit 4 digit 2 digit 1 digit 4 digit 2 digit 1 digit 4 digit 3 digit 4 digit 3 digit 4 digit 1 digit 0 sign
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451	213 214 215 216 217 218 219 220 221 222 223 224 225	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0-delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 1 digit 0 sign digit 4 digit 0 sign digit 4
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451	213 214 215 216 217 218 219 220 221 222 223 224 225	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0-delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 3 digit 2 digit 2 digit 1 digit 0 sign digit 4 digit 3 digit 4 digit 1 digit 0 sign digit 4 digit 3 digit 1 digit 0 sign digit 4 digit 3 digit 1 digit 0 sign digit 4 digit 3 digit 1 digit 0 sign digit 1 digit 0 digit 1 digit 0 digit 1 digit 0 digit 0 digit 1 digit 0 digit 1 digit 1 digit 0 digit 1 digit 1 digi
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	213 214 215 216 217 218 219 220 221 222 223 224 225 226	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY	0-delay, 1-hysteresis-1, 2-hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 4 digit 3 digit 1 digit 0 Sign
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 452 \\ 453 \\ - \end{array}$	213 214 215 216 217 218 219 220 221 222 223 224 225 226	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER	0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=lcD, 1=LcD+blink 0=lcD, 1=lcD 0=lcD, 1=lcD 0=lcD, 1=lcD 0=logit 1 digit 1 digit 3 digit 4 digit 3 digit 3 digit 4 digit 3 digit 3 digit 4 digit 1 digit 2 digit 1 digit 0 0=Vdc, 1=ldc 0=off, 1=on
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 444 \\ 441 \\ 444 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 452 \\ 453 \\ 454 \\ \end{array}$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY	0-delay, 1-hysteresis-1, 2-hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 2 digit 2 digit 1 digit 0 sign digit 4 digit 3 digit 4 digit 3 digit 4 digit 3 digit 4 digit 3 digit 4 digit 4 digit 3 digit 4 digit 4 dig
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 444 \\ 445 \\ 440 \\ 441 \\ 444 \\ 445 \\ 440 \\ 441 \\ 444 \\ 445 \\ 440 \\ 441 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 455 \\$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER	0-delay, 1-hysteresis-1, 2-hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=lED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 4 digit 3 digit 1 digit 4 digit 3 digit 2 digit 1 digit 4 digit 3 digit 2 digit 1 digit 4 digit 3 digit 2 digit 1 digit 4 digit 3 digit 2 digit 1 digit 3 digit 4 digit 3 digit 2 digit 1 digit 3 digit 4 digit 3 digit 1 digit 3 digit 1 digit 3 digit 1 digit 3 digit 1 digit 3 digit 3 digit 1 digit 3 digit 1 digit 3 digit 3
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 452 \\ 453 \\ 454 \\ 455 \\$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER	0-delay, 1-hysteresis-1, 2-hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=lED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 2 digit 2 digit 4 digit 4 digit 4 digit 4 digit 2 digit 1 digit 4 digit 2 digit 1 digit 3 digit 4 digit 3 digit 3 digit 3 digit 4 digit 3 digit 4 digit 3 digit 3 digit 3 digit 4 digit 3 digit 3
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 452 \\ 453 \\ 454 \\ 455 \\ 455 \\ 455 \\ 456 \\ 457 \\ 756 \\$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER DIAMETER 1 (VOLUME)	0-delay, 1-hystetesis 1, 2-hystetesis 2 0-adelay, 1-hystetesis 1, 2-hystetesis 2 0-no, 1=yes 0-no, 1=yes 0-no, 1=yes 0-LED, 1=LED+blink 0-LED, 1=LED+blink 0-LED, 1=LED+blink 0-LED, 1=LED+blink 0-no, 1=yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 4 digit 3 digit 4 digit 1 digit 0 sign digit 4 digit 3 digit 4 digit 3 digit 4 digit 1 digit 1 digit 0 Sign digit 4 digit 3 digit 4 digit 1 digit 2 digit 1 digit 2 digit 4 digit 3 digit 3 digit 3 digit 3 digit 4 digit 3 digit 3 digi
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 446 \\ 441 \\ 444 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 457 \\$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER DIAMETER 1 (VOLUME)	0-deday, 1-hysteresis-1, 2-hysteresis-2 0-adelay, 1-hysteresis-1, 2-hysteresis-2 0-no, 1-yes 0-no, 1-yes 0-no, 1-yes 0-lED, 1-LED+blink 0-LED, 1-LED+blink 0-lED, 1-LED+blink 0-lED, 1-LED+blink 0-leb, 1-LED+blink
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 444 \\ 440 \\ 441 \\ 444 \\ 445 \\ 440 \\ 441 \\ 444 \\ 445 \\ 440 \\ 441 \\ 445 \\ 440 \\ 441 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 456 \\ 457 \\ 458 \\ \end{array}$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 220	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER DIAMETER 1 (VOLUME)	0-detay, 1-hystetesis-1, 2-hystetesis-2 0-adetay, 1-hystetesis-1, 2-hystetesis-2 0-no, 1-yes 0-no, 1-yes 0-no, 1-yes 0-no, 1-yes 0-LED, 1-LED+blink 0-LED, 1-LED+blink 0-LED, 1-LED+blink 0-LED, 1-LED+blink 0-no, 1-yes 2 to 30 digit 1 digit 0 sign digit 4 digit 3 digit 2 digit 1 digit 0 sign digit 4 digit 3 digit 1 digit 1 digit 0 0-Vdc, 1-Idc 0-off, 1-on digit 4 digit 3 digit 1 digit 1 digit 0 0-Vdc, 1-Idc 0-off, 1-on digit 1 digit 0 0-Vdc, 1-Idc 0-off, 1-on 0-Vdc, 1-Idc 0-off, 1-on 0-Vdc, 1-Idc 0-off, 1-on 0-Vdc, 1-Idc 0-Vdc, 1-Vdc 0-Vdc, 1-Vdc 0-Vdc 0-Vdc, 1-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vdc 0-Vd
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 455 \\$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT TYPE ANALOG OUTPUT TYPE ANALOG OUTPUT TYPE ANALOG OUTPUT TYPE	0-delay, 1=hysteresis-1, 2=hysteresis-2 0-adelay, 1=hysteresis-1, 2=hysteresis-2 0-ano, 1=yes 0=no, 1=yes 0=no, 1=kes 0=no, 1=kes 0=leD, 1=LED+blink 0=LED, 1=LED+blink 0=leD, 1=LED+blink 0=leD, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 2 digit 3 digit 4 digit 3 digit 4 digit 3 digit 4 digit 1 digit 3 digit 4 digit 3 digit 3 digit 3 digit 3 digit 3 digit 3 digit 1 digit 1
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 452 \\ 453 \\ 455 \\ 455 \\ 456 \\ 457 \\ 458 \\ 459 \\ 459 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \\ 40 \\ 4$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 2 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER DIAMETER 1 (VOLUME)	0-delay, 1=hysteresis-1, 2=hysteresis-2 0=delay, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=kes 0=leb, 1=LED+blink 0=LED, 1=LED+blink 0=LED, 1=LED+blink 0=leb, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 2 digit 3 digit 4 digit 3 digit 4 digit 2 digit 1 digit 3 digit 4 digit 5 digit 6 0=Vdc, 1=Idc
$\begin{array}{r} 420 \\ 427 \\ 428 \\ 429 \\ 430 \\ 431 \\ 432 \\ 433 \\ 434 \\ 435 \\ 436 \\ 437 \\ 438 \\ 439 \\ 446 \\ 441 \\ 444 \\ 444 \\ 444 \\ 444 \\ 445 \\ 444 \\ 444 \\ 445 \\ 444 \\ 445 \\ 446 \\ 447 \\ 448 \\ 449 \\ 450 \\ 451 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 456 \\ 457 \\ 458 \\ 459 \\ 460 \\ 461 \\$	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 4 TRACK AUTO N° LINEARIZATION POINTS N° READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER DIAMETER 1 (VOLUME)	0-delay, 1-hysteresis-1, 2-hysteresis-2 0-adelay, 1-hysteresis-1, 2-hysteresis-2 0-no, 1-yes 0-no, 1-yes 0-no, 1-yes 0-lED, 1-LED+blink 1///>digit 0 1///>digit 1 1///>digit 2 1///>digit 3 1///>digit 4 1///>digit 0 1///>digit 3
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230	DELAY-HYST SETPONT 4 LATCH SETPOINT 1 LATCH SETPOINT 2 LATCH SETPOINT 2 LATCH SETPOINT 3 LATCH SETPOINT 4 BLINK SETPOINT 4 BLINK SETPOINT 3 BLINK SETPOINT 4 TRACK AUTO № LINEARIZATION POINTS № READINGS SETPOINT MAX ANALOG OUTPUT HI DISPLAY ANALOG OUTPUT LO DISPLAY ANALOG OUTPUT TYPE ANALOG OUTPUT TYPE ANALOG OUTPUT FILTER DIAMETER 1 (VOLUME)	0-delay, 1=hysteresis-1, 2=hysteresis-2 0=day, 1=hysteresis-1, 2=hysteresis-2 0=no, 1=yes 0=no, 1=yes 0=no, 1=yes 0=leD, 1=LED+blink 0=LED, 1=LED+blink 0=leD, 1=LED+blink 0=no, 1=yes 0=leD, 1=LED+blink 0=leD, 1=LED+blink 0=leD, 1=LED+blink 0=leD, 1=LED+blink 0=led, 1=LED+blink 0=no, 1=yes 2 to 30 digit 1 digit 2 digit 3 digit 4 digit 5 0=off, 1=on digit 1 digit 2 digit 1 digit 2 digit 1 digit 2 digit 3 digit 3 digit 4 digit 3

462	231		digit 1
463	251		digit 0
464	232		digit 4
465	252		digit 3
466	222	DIAMETER 2 (VOLUME)	digit 2
467	255		digit 1
468	234		digit 0
469	254		digit 4
470	235		digit 3
471	255	LENGTH 2 (VOLUME)	digit 2
472	236		digit 1
473	250		digit 0
474	237		digit 4
475	257		digit 3
476	238	DIAMETER 3 (VOLUME)	digit 2
477	250		digit 1
478	230		digit 0
479	255		digit 4
480	240		digit 3
481	210	LENGTH 3 (VOLUME)	digit 2
482	241		digit 1
483	211		digit 0
484	242	TANK'S SHAPE	0=no, 1=sphere, 2=cyinder, 3=cylinder+sphere, 4=silo
485	272	DECIMAL POINT (VOLUME)	0=88888, 1=8888.8, 2=888.88, 3=88.888, 4=8.8888
486	243	EXCITATION	0=24V, 1=10V
487	275	INPUT TYPE	0=process, 1=load cell, 2=Pt100, 3=thermocouple, 4=potentiometer
488	244	PROCESS TYPE	0=volts, 1=amperes
489	277	THERMOCOUPLE TYPE	0=TCJ, 1=TCK, 2=TCT, 3=TCR, 4=TCS, 5=TCE
490	245	PROCESS RANGE	0=1V/1mA, 1=10V/20mA
491	LOAD CELL RANGE		3=15mV, 2=30mV, 1=60mV, 0=300mV
492	246	TEMPERATURE SCALE	0=°C, 1=°F
493	270	TEMPERATURE RESOLUTION	0=0.1°, 1=1°
494	247		sign
495	277	TEMPERATURE OFFSET	digit 1
496	248		digit 0
497	210	DISPLAY DECIMAL POINT	0=88888, 1=8888.8, 2=888.88, 3=88.888, 4=8.8888

498	249 FILTER	FILTER P	0 to 9
499	275	FILTER E	0 to 9
500	250		digit 2
501	250 READINGS A	READINGS AVERAGE	digit 1
502	251		digit 0
503	251	BRIGHT	0=HI, 1=LO
504	252	LEFT ZEROS	0=no, 1=yes
505	252	RATE	0=16/s, 1=4/s, 2=1/s
506	252	ROUND	0=001, 1=002, 2=005, 3=010, 4=020, 5=050, 6=100
507	255	PRINT DATE AND TIME	0=off, 1=on
508	254	INTEGRATOR	0=no, 1=yes
509	234	TIME BASE	0=second, 1=minute, 2=hour, 3=day
510	255		digit 3
511	255	INTEGRATOR FACTOR	digit 2
512	256		digit 1
513	250		digit 0
514		FACTOR DECIMAL POINT	0=88888, 1=8888.8, 2=888.88, 3=88.888
515	257	TOTALIZER DECIMAL POINT	0=88888888, 1=88888888.8, 2=888888.88, 3=88888.888, 4=8888.8888, 5=888.88888, 6=88.888888, 7=8.88888888
516	250		sian
517	258		digit 4
518	250	LO-CUT	digit 3
519	259		digit 2
520	260		digit 1
521	260		digit 0
522	261		digit 3
523	261	SECURITY CODE	digit 2
524			digit 1
525	202		digit 0
526	263	SOFT LOCK 1	bit 0 =setpoint 1 bit 1 =setpoint 2 bit 2 =setpoint 3 bit 3 =setpoint 4

527		SOFT LOCK 2	bit 0 = input bit 1 = scaling+integrator+volume bit 2 = filters+display+round bit 3 = -
528	264	SOFT LOCK 3	bit 0 = analog output bit 1 = serial communication output bit 2 = logic inputs bit 3 = direct programming of setpoint values
529	201	SOFT LOCK 4	bit 0 = tare key function bit 1 = - bit 2 = - bit 3 = total lock
530	265	LOGIC FUNCTION CN2.1	0 to 36
531	205	LOGIC FUNCTION CN2.2	0 to 36
532	266	LOGIC FUNCTION CN2.3	0 to 36
533	200	LOGIC FUNCTION CN2.4	0 to 36
534	267	-	-
535	207	-	-
536	260	PROTOCOL	1=ASCII, 2=iso1745, 3=modbus
537	208	BAUD RATE	1=1200, 2=2400, 3=4800, 4=9600, 5=19200
538	260	ADDRESS TENS	0 to 9
539	209	ADDRESS UNITS	0 to 9
540	270	TRANSMISSION TO BETA-M	0=no, 1=yes
541	270	DELAY RS485	1=30ms, 2=60ms, 3=100ms, 4=300ms, 5=no delay

DINAMIC VARIABLES (READ ONLY)

MODBUS	Variable	Description	Format
276	Peak Value	Internal peak value	Long
278	Valley value	Internal valley value	Long
280	Tare value	Internal tare value	Long
282	Batch counter	Internal batch counter	Integer (1 word)
285	Totalizer/Integrator	Internal totalizer/integrator counter	Float
287	Net value	Net value on display (with filters, round and hold)	Long
289	Gross value	Gross value on display (with filters, round and hold)	Long
291	Input signal value	Input signal value on display (with filters and hold)	Float
293	Setpoint1	Setpoint 1 value	Long
295	Setpoint2	Setpoint 2 value	Long
297	Setpoint3	Setpoint 3 value	Long
299	Setpoint4	Setpoint 4 value	Long
301	Batch	Batch Value on display (with filters and hold)	Integer (1 word)
302	Totalizer/Integrator	Total Value on display (with filters and hold)	Float
304	Peak	Peak Value on display (with filters and hold)	Long
306	Valley	Valley Value on display (with filters and hold)	Long
308	Net	Internal net value	Float
310	Gross	Internal gross value	Float
312	Input signal value	Input signal value	Long
314	Net round	Net value (with filters and round)	Long
316	Gross round	Gross value (with filters and round)	Long
318	State of the setpoints and the logic inputs (0=deactivated, 1=activated)	bit 0 = setpoint 1 status bit 1 = setpoint 2 status bit 2 = setpoint 3 status bit 3 = setpoint 4 status bit 4 = logic input 1 status bit 5 = logic input 2 status bit 6 = logic input 4 status bit 7 = logic input 5 status	Byte (High)

DINAMIC VARIABLES (READ ONLY)

MODBUS	Variable	Description	Format
318	Options installed (0=not installed, 1=installed)	bit 0 = 2RE bit 1 = 4RE bit 2 = RS2 bit 3 = RS4 bit 4 = - bit 5 = BCD bit 6 = ANA bit 7 = -	Byte (Low)
310		digit 0 (LSB)	Byte
515		digit 1	Byte
320		digit 2	Byte
520	Digits of the main display	digit 3	Byte
321		digit 4	Byte
521		digit 5 (MSB)	Byte
377		LED's	Byte
522		-	Byte
373		digit 0 (LSB)	Byte
525		digit 1	Byte
324		digit 2	Byte
524	Digits of the auxiliany display	digit 3	Byte
375		digit 4	Byte
525		digit 5	Byte
326		digit 6	Byte
520		digit 7 (MSB)	Byte
377		units	Byte
327		tens	Byte
328	Version	hundreds	Byte
		'M'	Byte
220		'B'	Byte
525	Sensor Break	0=OK, 1=Broken	Byte
330	Display overflow (internal)	0=no, 1=yes	Byte
220	Input overflow	0=no, 1=yes	Byte
221	Display overflow	0=no, 1=yes	Byte
331	Totalizer / Integrator overflow	0=no, 1=yes	Byte

PROGRAMMING DATA (READ/WRITE)

MODBUS	Variable	Description
246		sign
346		digit 4
247		digit 3
347	SERT TARE VALUE	digit 2
247		digit 1
347		digit 0