KOS203P USER GUIDE **PUSH BUTTON Pt100** TWO WIRE (4 to 20) mA OUTPUT #### Important - Please read this document before installing. Every effort has been taken to ensure the accuracy of this document, however we do not accept responsibility for damage, injury, loss or expense resulting from errors and omissions, and we reserve the right of amendment without notice. # IMPORTANT - CE & SAFETY REQUIREMENTS 🔼 Product must be mounted inside a suitable enclosure providing environmental protection to IP65 or greater. To maintain CE EMC requirements, input wires must be less than 3 metres. The product contains no serviceable parts, or internal adjustments. No attempt must be made to repair this product. Faulty units must be returned to supplier for repair. This product must be installed by a qualified person. All electrical wiring must be carried out in accordance with the appropriate regulations for the place of installation. Before attempting any electrical connection work, please ensure all supplies are switched off. | ABSOLUTE MAXIMUM CONDITIONS (To exceed may cause damage to the unit). | | |---|---| | Supply Voltage | ± 30 V dc (Protected for over voltage and reverse connection) | | Current with over voltage | ± 100 mA | | Input Voltage | ± 3 V between any terminals | | Ambient | Temperature (-40 to 85) °C, Humidity (10 to 95) % RH (Non- | | | condensing) | ## Important - Please read this document before any installing. ## 1~DESCRIPTION. This head mounted temperature transmitter connects to any standard Pt100 resistance sensor and converts the linearised temperature to a (4 to 20) mA signal. The transmitter is a two-wire device, and is fully configurable by the user, over a wide temperature range, with the aid of a simple push button. This new device design incorporates additional configuration menus, allowing the user to push button trim the transmitter output at both zero and span, ideal for trimming out sensor errors. The transmitters advanced circuitry guarantees high stability over the wide operating ambient temperature ranges experienced by head mounted devices. One of the transmitter's features is the program LED, which provides visual indication of sensor fault when in normal operation and is also used to guide the operator through the simple menus during configuration. ### 2~RECEIVING AND UNPACKING. Please inspect the packaging and instrument thoroughly for any signs of transit damage. If the instrument has been damaged, please notify your supplier immediately. ## 3~SPECIFICATION Refer to data sheet for full specification | Troid to data chock for fair opcomodition | | |---|---| | Factory default | (0 to 100) °C, upscale burnout, 0.0°C user trim | ## 4~ INSTALLATION AND WIRING Mounting holes: two holes 5.5 mm diameter, 33 mm centres. Centre hole sensor wire entry 4 mm. MT-KOS203P_EN_20181121 #### 4.1~MECHANICAL. The transmitter has been specifically designed to fit inside a DIN standard probe head enclosure, which provides adequate protection from moisture, dust, corrosive atmospheres etc. All cable entries must be sealed using the correct size gland. Likewise, any probe assembly fitted must be sealed. Care must be taken when locating the transmitter to ensure the working ambient temperature range of (-40 to 85) °C is not exceeded. The device body has a centre hole allowing the sensor wire to enter screw terminals from the transmitter centre; this is applicable when the sensor is mounted directly below the transmitter. #### 4.2~ELECTRICAL. Electrical connections to the transmitter are made to the screw terminal provided on the top face. The sensor wires must be equal length and type for the lead compensation to work correctly. The screw terminals allow for wires to enter either inner or outer direction. The transmitter is protected against reverse connection and over voltage. If no sensor (input) connection is made the transmitter will go into either up or down scale output current, depending on configuration. Figure 1 gives connection details; the output is shown connected to a 24 V supply. The load symbol represents any other device connected in the loop, such as monitoring equipment, panel indicators and loop isolators. The load value can range from 0 ohms to the max loop load for given supply. The transmitter conforms with EC directive BS EN 61326 when correctly installed in a termination head providing at least IP54 protection and with sensor wires less than 3 metres. Screened or twisted pair wires are recommended for output wires. Always ensure the (4 to 20) mA loop is grounded at one point; this would normally be at the monitoring equipment or loop power supply. In normal operation the program LED acts as the over-range LED. Figure 1 ## 5~USER CONFIGURATION. ## IMPORTANT READ COMPLETE SECTION BEFORE ATTEMPTING CONFIGURATION PARTICULAR CARE SHOULD BE TAKEN REGARDING TIMEOUTS IN MENU 2 & 3 Figure 2 ## **User Configuration** User configuration uses three menus, each menu sets a different parameter: - | | Oser corrigaration uses three menus, each mond sets a different parameter. | | | |---------------------------------|--|--|--| | User configuration menu options | | nu options | | | | Menu 1 | Set range | | | | Menu 2 | Set direction of output on sensor burnout | | | | Menu 3 | User trim at 4 mA and 20 mA. | | | | Factory reset | Hold the button down whilst the device is powered up | | The configuration menus are navigated using the push button and program LED. The push button is located under the hole in the keyhole shaped wiring label. To press the button, use a 3 mm screw driver (flat blade) inserted into the hole. The button has a slight click action. | Three types of button press are used | | |--------------------------------------|------------------------------| | Single button press | = Advance | | Double press within 0.5 seconds | = Escape or change direction | | Press and hold button > two seconds | = Enter | When a menu is selected the Program LED will flash in bursts of one to three flashes. The number of flashes represents the menu number ### 5~USER CONFIGURATION (continued). #### Navigating the menus To access menus, press and hold button > 2 second, then program LED will start to flash, one flash every burst. This Indicates "menu 1" is selected. Use single button press to advance selection to "menu 2". The program LED will now show two flashes per burst. The next single press will advance the selected menu to menu 3 and the next single press will advance selected menu back to menu 1. Repeated single presses will cycle the selected menu back around menus 1 to 3, in the above sequence. Double press button to escape from menus and return to normal. Normal operation can also be selected by turning transmitter power off and on. Note the transmitter will not time out and automatically escape from menus. #### Using menus. #### Menu 1 Range configuration (no timeout). Configuration will require the following tools and equipment: - DC Supply (10 to 30) V @ 30 mA Precision resistance decade box to simulate PT100 sensor. (Do not use electronic calibrator) Screw driver flat blade 3mm wide PT100 resistance tables Current meter (user trim) To re-range the temperature scale, use the following instructions: - | Me | enu 1 Range configuration | | |----|---|--| | 1 | Refer to figure 2, connect resistance box to the device input terminals using | | | | three wire connection. Connect output to a DC supply, observe polarity. Turn | | | | power on and allow 1-minute warm up period | | | 2 | Set calibrator to the equivalent resistance of the Pt100 sensor, at required low | | | | range temperature. If the program LED is on at this stage the input is out of | | | | range, check resistance and connection. | | | 3 | Press and hold button > 2 seconds to enter menus, menu 1 will then be | | | | selected, indicated by one flash every burst | | | 4 | Whilst menu 1 is selected, press and hold button > 2 seconds to enter menu 1, | | | | at which stage the program LED toggle on and off at a slow rate. | | | 5 | Allow twenty seconds then single press button to store low range setting, the | | | | program LED will now flash at a fast rate. | | | 6 | Set calibrator to the equivalent resistance of the Pt100 sensor, at required high | | | | range temperature, and allow twenty seconds. | | | 7 | Press button to store high range setting. The program LED will flicker for one | | | | second before the transmitter returns to normal operation. The transmitter is | | | | now re-ranged. | | #### Menu 2 Burnout selection (timeout is 3 seconds) Menu 2 Burnout selection | 1 | Refer to figure 2, connect output to a DC supply, observe polarity. For this menu | |---|---| | | the input can be connected or open circuit. Turn power on. | | 2 | Press and hold button > 2 seconds to enter menus, menu 1 will then be selected, indicated by one flash every burst. | | 3 | Single press button to advance selection to menu 2, indicated by two flashes of the program LED every burst. | | 4 | Whilst menu 2 is selected, press and hold button > 2 seconds to enter menu 2, at which stage the program LED will either toggle on and off, at a slow rate indicating low scale burnout, or fast rate indicating upscale burnout. | | 5 | To change burnout direction single press button. The Program LED toggle rate will change to the other setting. Repeated single presses will toggle between up and down scale. | | 6 | To store setting, allow 3 seconds with no button action. The program will then | timeout, store new setting then return to normal operation. ## 5~USER CONFIGURATION (continued). #### Menu 3 User trim (Timeout is 20 seconds) This menu allows the user to trim the output current at 4 mA and 20 mA points (similar function to trim potentiometers) and is very useful for trimming out sensor errors. The input of the transmitter must be connected to either a calibrator or a temperature sensor held at a known temperature. The (4 to 20) mA loop current will also need to be monitored with a current meter. #### Menu 3 User trim - 1 Refer to figure 2, connect sensor or resistance box to the device input terminals using three wire connection. Connect output to a DC supply, observe polarity, connect current meter in series with loop. Turn power on and allow 1-minute warm up period. - 2 Set calibrator to the equivalent resistance of the Pt100 sensor, at required trim point. Alternatively ensure sensor temperature is at the required calibration point - The transmitter will automatically trim the 4 mA end if the output is within the active band of (3.8 to 6) mA, and trim the 20 mA end if the output is within the active band of (18 to 21.5) mA. No setting adjustment is performed if the output current is not within these two bands. Ensure your calibration points are within these bands. - 4 Press and hold button > 2 seconds to enter menus, menu 1 will then be selected, indicated by one flash every burst. - 5 Single press button to advance selection to menu 2, and single press again to select menu 3, indicated by three flashes of the program LED every burst. - Whilst menu 3 is selected, press and hold button > 2 seconds to enter menu 3, at which stage the program LED toggle on and off at either a slow rate indicating downward trim direction or fast rate indicating upwards trim direction. - 7 To change trim direction, double press button. The Program LED toggle rate will toggle to the opposite direction. Repeated double presses will toggle between up and down trim direction - 8 To trim output current, single press button to advance current 2 uA in set direction or press and hold button to auto advance in set direction. Release button to stop advance. Note after approximately 20 seconds of continuous button press, the auto trim rate will speed up. Monitor the current change on the current meter. - 9 To store new setting, allow 20 seconds with no button action. The program will then timeout, store new setting then return to normal operation. #### Aid to user trim - 1 Trim the 4 mA end first. The 4 mA trim is an offset adjustment and will affect both low and high ends, they will trim by the same amount (Fig 4) - 2 Trimming the 20 mA end will not affect the 4 mA end. it will stretch or contract the 'span' between them. (Fig 5) #### Reset to factory default settings If required the device can be reset to factory default setting. This procedure also removes any user trim adjustment. Factory default settings are: | Factory default settings | | |--------------------------|-----------------------------| | Range | (0 to 100) °C | | Burnout | up-scale | | User trim | All user adjustment cleared | | To reset to factory setting | | |-----------------------------|---| | Default | Hold the button down whilst the KOS203P is powered up | DISEÑOS Y TECNOLOGIA S.A., XAROL, 6B, P.I. Les Guixeres, 08915 Badalona Web Page: www.ditel.es, Email: dtl@ditel.es Technical Support: support@ditel.es Tel: +34 933 394 758 Fax: +34 934 903 145